下载此文档

信号频谱测量实验报告.doc


文档分类:通信/电子 | 页数:约17页 举报非法文档有奖
1/17
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/17 下载此文档
文档列表 文档介绍
信号频谱测量实验报告信号的频谱图实验报告大连理工大学实验报告学院(系):专业:______________________班级:___姓名:学号:组:___实验时间:实验室:实验台:指导教师签字:成绩:实验一信号的频谱图一、、实验内容:MATLAB源程序为:t=-3::3;n0=-3;n1=-1;t0=2;fori=0:2t1=n0::n0+t0/2;x1=t1-n0;t2=n1-t0/2::n1;x2=-t2+n1;plot(t1,x1,'r',t2,x2,'r');holdon;n0=n0+t0;n1=n1+t0;endn_max=[1371531];N=length(n_max);fork=1:Nn=1;sum=0;while(n(n_max(k)+1))b=4./pi/pi/n/n;y=b*cos(n*pi*t);sum=sum+y;n=n+2;endfigure;n0=-3;n1=-1;t0=2;fori=0:2t1=n0::n0+t0/2;x1=t1-n0;t2=n1-t0/2::n1;x2=-t2+n1;plot(t1,x1,'r',t2,x2,'r');holdon;n0=n0+t0;n1=n1+t0;endy=sum+;plot(t,y,'b');xlabel('t'),ylabel('wove');holdoff;axis([--]);gridon;title(['themax=',num2str(n_max(k))])end运行结果:MATLAB源程序为:fork=1:3;n=-30:30;tao=k;T=2*k;w=2*pi/T;x=n*tao*=sinc(x/pi);fn=tao*fn1.*fn1;subplot(3,1,k),stem(n*w,fn);gridontitle(['T=',num2str(2*k)]);axis([-30300k]);end运行结果:x=Columns1through9------------------:实验三周期信号的频谱分析实验报告实验三周期信号的频谱分析一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。二、原理说明:1、连续时间周期信号的傅里叶级数分析任何一个周期为T1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。其中三角傅里叶级数为:?x(t)?a0??[akcos(k?0t)?bksin(k?0t)]?1?或:x(t)?a0?其中?0??ck?1kcos(k?0t??k)?,称为信号的基本频率(Fundamentalfrequency),a0,ak,和bkT1分别是信号x(t)的直流分量、余弦分量幅度和正弦分量幅度,ck、?k为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率k?0的函数,绘制出它们与k?0之间的图像,称为信号的频谱图(简称“频谱”),ck,k?0图像为幅度谱,?k,k?0图像为相位谱。三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,那么,它就可以被看作是由很多不同频率的互为谐波关系(harmonicallyrelated)的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量(ponent),其幅度(amplitude)为ck。也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。指数形式的傅里叶级数为:?x(t)?k????aekjk?,ak为指数形式的傅里叶级数的系数,按如下公式计算:1ak?T1T1/2?T1/2?jk?0tx(t)?指数形式的傅里叶级数告诉我们,如果一个周期信号x(t),满足狄里克利条件,那么,它就可以被看作是由很多不同频率的互为谐波关系(harmo

信号频谱测量实验报告 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数17
  • 收藏数0 收藏
  • 顶次数0
  • 上传人文库旗舰店
  • 文件大小37 KB
  • 时间2019-12-21
最近更新