三角形的五心.doc这是我整理的一些内容,希望对你有所帮助:【一些结论】:以下皆是向量1若P是△ABC的重心PA+PB+PC=02若P是△ABC的垂心PA•PB=PB•PC=PA•PC(内积)3若P是△ABC的内心aPA+bPB+cPC=0(abc是三边)4若P是△ABC的外心|PA|²=|PB|²=|PC|²(AP就表示AP向量|AP|就是它的模)5AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞)则直线AP经过△ABC内心6AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞)经过垂心7AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+∞)=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点【以下是一些结论的有关证明】+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB)+cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c)OC+(aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与AB相交于F,∵O是内心∴b/a=AF/BF,c/a=AE/CE过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,所以四边形OMAN是平行四边形根据平行四边形法则,得向量OA=向量OM+向量ON=(OM/CO)*向量CO+(ON/BO)*向量BO=(AE/CE)*向量CO+(AF/BF)*向量BO=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO∴a*向量OA+b*向量OB+c*向量OC=△ABC为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},求P点轨迹过三角形的垂心OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP•BC=入{(AB•BC/|AB|^2*sin2B)+AC•BC/(|AC|^2*sin2C)},AP•BC=入{|AB|•|BC|cos(180°-B)/(|AB|^2*sin2B)+|AC|•|BC|cosC/(|AC|^2*sin2C)},AP•BC=入{-|AB|•|BC|cosB/(|AB|^2*2sinBcosB)+|AC|•|BC|cosC/(|AC|^2*osC)},AP•BC=入{-|BC|/(|AB|*2sinB)+|BC|/(|AC|*2sinC)},
三角形的五心 来自淘豆网m.daumloan.com转载请标明出处.