下载此文档

傅里叶变换窗函数,泄露,分辨率.doc


文档分类:IT计算机 | 页数:约7页 举报非法文档有奖
1/7
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/7 下载此文档
文档列表 文档介绍
傅里叶变换窗函数,泄露,分辨率 用窗函数分析信号,相当于将一个待分析信号x1通过一个传输函数为窗函数傅里叶变换的滤波器得到输出信号或分析信号y1(其实滤波器系数即窗函数的时域信号值).信号分析有不同的目的。一是分辩出原来(周期)信号x1的频率,此时要求频率分辨率高;二是以下红色部分摘自,感谢作者分享。窗函数的选取是频率分辨率与频率泄露的折衷。(频率泄露少的含义是旁瓣能量小,即旁瓣波峰低,衰减速度快)降低旁瓣能量的代价是增加主瓣的宽度,从而降低了分辨率。,频率分辨率高,主瓣宽,通带与阻带之间的过渡带宽;旁瓣波峰高,衰减速度慢,频谱泄露大,使得滤波器通带和阻带里的波动增大,影响输出信号的频率分析精度。FFT算法引进了栅栏效应,截断引进了频率泄露。每种窗函数有其自身的特性,不同的窗函数适用于不同的应用。要选择正确的窗函数,必须先估计信号的频谱成份。如若信号中有许多远离被测频率的强干扰频率分量,应选择旁瓣衰减速度较快的窗函数(强干扰意味着信号强,旁瓣一定要衰减快,使得强干扰处的频率乘以衰减后的旁瓣依然是一个很小的值,而第一个旁瓣值大不大都没关系);如果强干扰频率分量紧邻被测频率时,应选择旁瓣峰值较小的窗函数(同理,要使得乘积小,必须使得主瓣临近的旁瓣小);如果被测信号含有两个或两个以上的频率成份,应选用主瓣很窄的窗函数;如果是单一频率信号,且要求幅度精度较高,则推荐用宽主瓣的窗函数(此时主要是为了抵消fft算法带来的栅栏效应,比较宽的主瓣能使得fft在频域采样时采的更准确,因为此时主瓣很宽平,主瓣顶部可以看做不变)。对频带较宽或含有多个频率成份的信号则采用连续采样。绝大多数应用采用汉宁(Hanning)窗即可得到满意的结果,因为它具有较好的频率分辨率和抑制频谱泄漏的能力。对频谱的理解:用不同的频率成分表示时域信号。采样时一般采不到整数倍的周期数,这会使得需要更多的频率成分来表示这个截取的信号。则会使得频域扩散到整个频域中。(时域有限的信号对应频域无限的频谱,这也是引入频谱泄露的原因)。即使是周期信号,截取后变成有限时域或者无限频域的信号,此时不管以多高的频率采样,都会在频域产生频域混叠。泄露截断会使谱分析精度受到影响。如果时域信号是周期性的,而截断又按整周期取数,信号截断不会产生问题,因为每周期信号都能代表整个周期信号变化情况。若不是整周期截取数据,则截断将使信号波形两端产生突变,所截取的一段信号与原信号有很大不同,对这个被截断的时域信号进行谱分析时,本来集中的线谱将分散在该线谱临近的频带内,产生原信号中不存在的新的频率成分,在频谱分析技术上称这种效应为泄露。意思是原先集中的频率信息泄露到旁边频段去了,影响谱分析的精度,并干扰对频谱的识别。如果时域信号是随机信号,截断的结果在原先连续谱上将出现皱纹,即皱波效应,同样会影响频谱图的识别。信号截断产生泄露的原因是信号失真。因为截断相当于用一矩形窗函数和信号相乘,根据卷积定理,其频谱为两个时间函数谱的卷积,即在相应频率处进行频谱相乘,由于矩形函数的频谱是一个带旁瓣的无限带宽的频谱(与基频对应的图形称为主瓣,与谐波频率对应的称旁瓣),所以其中的谱线便被扩展成矩形信号谱窗(sin(wt)形函数)的形状。为了减少泄露误差,除采用整周期截断外,主要是加窗的办法。加窗加窗的主导想法是用比较光滑的窗

傅里叶变换窗函数,泄露,分辨率 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数7
  • 收藏数0 收藏
  • 顶次数0
  • 上传人cxmckate6
  • 文件大小88 KB
  • 时间2020-01-16
最近更新