1第三章反渗透第一节概述一、反渗透技术发展概况人类发现渗透现象的历史已有250多年,,反渗透才作为一项新型膜分离技术问世。同年,在Reid的建议下,反渗透被列入美国国家计划。1960年,加利福尼亚大学的Loeb和Sourirajan等采用氯酸镁水溶液作为添加剂,首次研制出具有高脱盐率(%)和高通量(259L/m2?d)的非对称醋酸纤维素反渗透膜,使得反渗透膜分离技术进入实用阶段。目前,反渗透已成为海水和苦咸水淡化最经济的技术,成为超纯水和纯水制备的优选技术。反渗透技术在料液分离、纯化和浓缩,锅炉水的软化,废液的回用以及微生物、细菌和病毒的分离方面都发挥着巨大的作用。二、反渗透膜分离原理当溶液与纯溶剂被半透膜隔开,半透膜两侧压力相等时,纯溶剂通过半透膜进入溶液侧使溶液浓度变低的现象称为渗透。此时,单位时间内从纯溶剂侧通过半透膜进入溶液侧的溶剂分子数目多于从溶液侧通过半透膜进入溶剂侧的溶剂分子数目,使得溶液浓度降低。当单位时间内,从两个方向通过半透膜的溶剂分子数目相等时,渗透达到平衡。如果在溶液侧加上一定的外压,恰好能阻止纯溶剂侧的溶剂分子通过半透膜进入溶液侧,此外压称为渗透压。渗透压取决于溶液的系统及其浓度,且与温度有关,如果加在溶液侧的压力超过了渗透压,则使溶液中的溶剂分子进入纯溶剂内,此过程称为反渗透。反渗透膜分离过程是利用反渗透膜选择性地透过溶剂(通常是水)而截留离子物质的性质,以膜两侧的静压差为推动力,克服溶剂的渗透压,使溶剂通过反渗透膜而实现对液体混合物进行分离的膜过程。因此,反渗透膜分离过程必须具备两个条件:一是具有高选择性和高渗透性的半透膜;二是操作压力必须高于溶液的渗透压。三、反渗透膜分离过程特点反渗透膜分离过程在常温下进行、无相变、能耗低,可用于热敏感性物质的分离、浓缩;可有效地去除无机盐和有机小分子杂质;具有较高的脱盐率和较高的水回用率;膜分离装置简单,操作简便,便于实现自动化;分离过程要在高压下进行,因此需配备高压泵和耐高压管路;反渗透膜分离装置对进水指标有较高的要求,需对源水进行一定的预处理;分离过程中,易产生膜污染,为延长膜使用寿命和提高分离效果,要定期对膜进行清洗。第二节反渗透过程传质机理20世纪50年代末以来,许多学者先后提出了各种不同的反渗透膜分离过程的传质机理和传质模型,现将几种机理简介如下。一、溶解扩散理论溶解扩散理论是朗斯代尔(Lonsdale)和赖利(Riley)等人提出的应用比较广泛的理论。该理论将反渗透膜的活性表面皮层看成是无缺陷的致密无孔膜,溶剂与溶质都能溶解于均质的非多孔膜表面皮层内,溶解量的大小服从亨利定律,在浓度或压力造成的化学位差推动下,从膜的一侧向另一侧扩散,再在膜的另一侧解吸。溶质和溶剂在膜中的溶解扩散过程服从菲克(Fick)定律。该机理认为溶质和溶剂都能溶于均质或非多孔型膜表面,以化学位差为推动力,通过分子扩散而实现渗透过程。因此,物质的渗透能力不仅取决于扩散系数,而且取决于其在膜中的溶解度。溶质和溶剂溶解度的差异及在膜相中扩散性的差异强烈地影响其透过膜的能力的差异。溶质的扩散系数与水分子的扩散系数相差越大,在压力作用下,水与溶质在膜中的移动速度相差就越大,因而两者透过膜的分子数相差越多,渗透分离效果越明显。溶解扩散理论的具体渗透过程为:。,他们在化学位差的作用下以分子扩散的形式渗透过反渗透膜的活性层。。在以上渗透过程中,一般假设溶解和解吸过程进行得较快,而渗透过程相对较慢,渗透速率取决于溶质和溶剂在膜内的扩散过程。该理论最适用于均相、高选择性的膜分离过程,如反渗透和渗透汽化过程。二、优先吸附-毛细孔流理论当溶液中溶有不同物质时,其表面张力将发生不同的变化。例如当水中溶入醇、酸、醛、酯等有机物质时,可使其表面张力减小;但当溶入某些无机盐类时,反而使其表面张力稍有增加。研究发现,溶质的分散是不均匀的,即溶质在溶液表面层中的浓度与溶液内部的浓度不同,这种溶质浓度的改变现象称为溶液表面的吸附现象。使表面层浓度大于溶液内部浓度的作用称为正吸附作用,反之称为负吸附作用。这种由表面张力引起的溶质在两相界面上正的或负的吸附过程,形成一个相当陡的浓度梯度,使得溶液中的某一成分优先吸附在界面上。这种优先吸附的状态与界面性质(物化作用力)密切相关。索里拉金等人提出了优先吸附-毛细孔流理论。以氯化钠水溶液为例,溶质是氯化钠,溶剂是水,膜的表面选择性地吸收水分子而排斥氯化钠,盐是负吸附,水是正吸附,水优先吸附在膜的表面上。在压力作用下,优先吸附的水分子通过膜,从而形成了脱盐的过程。这种理论同时给出了混
反渗透第一节概述 来自淘豆网m.daumloan.com转载请标明出处.