《抽屉原理》教学内容:人教板十二册第70、71页的例1、例2教学目标:1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。2、会用“抽屉原理”解决简单的实际问题。3、通过操作发展学生的类推能力,形成比较抽象的数学思维。教学重点:认识“抽屉原理”。教学难点:灵活运用“抽屉原理”解决实际问题。教学方法:小组合作,自主探究。教学准备:若干根小棒,4个纸杯。教学过程:一、创设情境,导入新知老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。二、自主学习,初步感知(一)出示例1:4枝铅笔,3个文具盒。1、观察猜测猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?2、自主探究(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。(3)交流讨论,汇报。可能如下:第一种:枚举法。用实物摆一摆,把所有的摆放结果都罗列出来。第二种:假设法。如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。第三种:数的分解。把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。(4)、比较优化。请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?把100枝铅笔放进99个盒子里呢?怎样解释这一现象?师:为什么不采用枚举法来验证呢?数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。3、引导发现只要放的铅笔数比盒子的数量多1,不管怎么放,总有一个盒子里至少放进2枝铅笔。(二)出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?7本书会怎样呢?9本呢?1、学生尝试自已探究。2、交流探究的结果,可能如下:1)枚举法。共有3种情况。在任何一种结果中,总有一个抽屉至少放进3本书2)假设法。把5本书“平均分成2份”,5÷2=2…1,如果每个抽屉放进2本书,还剩下1本。把剩下
抽屉原理 来自淘豆网m.daumloan.com转载请标明出处.