下载此文档

初一数学知识点.doc


文档分类:中学教育 | 页数:约5页 举报非法文档有奖
1/5
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/5 下载此文档
文档列表 文档介绍
初一数学知识点无限不循环小数和开根开不尽的数叫无理数整数和分数统称为有理数数学上,有理数是两个整数的比,通常写作a/b,这里b不为零。分数是有理数的通常表达方法,而整数是分母为1的分数,当然亦是有理数。数学上,有理数是一个整数a和一个非零整数b的比(ratio),通常写作a/b,故又称作分数。希腊文称为λογος,原意为“成比例的数”(rationalnumber),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。所有有理数的集合表示为Q,有理数的小数部分有限或为循环。理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。如圆周率、2的平方根等。实数(realmunber)分为有理数和无理数(irrationalnumber)。·无理数与有理数的区别:1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,比如4=,4/5=,1/3=……而无理数只能写成无限不循环小数,比如√2=…………根据这一点,、所有的有理数都可以写成两个整数之比;而无理数不能。根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”。本来嘛,无理数并不是不讲道理,只是人们最初对它不太了解罢了。利用有理数和无理数的主要区别,可以证明√2是无理数。证明:假设√2不是无理数,而是有理数。既然√2是有理数,它必然可以写成两个整数之比的形式:实数包括有理数和无理数。其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括无限循环小数、有限小数、整数自然数(naturalnumber)用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。自然数由0开始,一个接一个,组成一个无穷集合。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。。他总结了自然数的性质,用公理法给出自然数的如下定义。自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。②N中每一个元素都能在N中找到一个元素作为它的后继者。③1是0的后继者。④0不是任何元素的后继者。⑤不同元素有不同的后继者。⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数。这样,所有单元素集{x},{y},{a},{b}等具有同一基数,记作1。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等。自然数的加法、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。自然数在日常生活中起了很大的作用,人们广泛使用自然数。“0”是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也

初一数学知识点 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数5
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1542605778
  • 文件大小50 KB
  • 时间2020-02-25