圆锥曲线与方程知识点汇总§、椭圆的定义:M平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。?(1)平面上----这是大前提(2)动点M到两个定点F1、F2的距离之和是常数2a(3)常数2a要大于焦距2c4分母哪个大,焦点就在哪个轴上平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹标准方程相同点焦点位置的判断不同点图形焦点坐标定义a、b、c的关系xyF1F2POxyF1F2POa2-c2=b2求椭圆的标准方程(1)首先要判断类型,(2)用待定系数法求a2=b2+(-4,0)(4,0),椭圆上一点P到两焦点距离之和等于10,求椭圆的标准方程。:∵椭圆的焦点在x轴上∴设它的标准方程为:∵2a=10,2c=8∴a=5,c=4∴b2=a2-c2=52-42=9∴所求椭圆的标准方程为?思考一个问题:把“焦点在y轴上”这句话去掉,怎么办?定义法:如果所给几何条件正好符合某一特定的曲线(圆,椭圆等)的定义,:所求曲线方程的类型已知,则可以设出所求曲线的方程,,要“先定型,再定量”.~求曲线方程的方法:标准方程图象范围对称性顶点坐标焦点坐标半轴长离心率a、b、c的关系c2=a2-b2-a≤x≤a,-b≤y≤b-b≤x≤b,-a≤y≤a对称轴为x轴、y轴;对称中心为原点(a,0)、(-a,0)、(0,b)、(0,-b)(b,0)、(-b,0)、(0,a)、(0,-a)(c,0)、(-c,0)(0,c)、(0,-c)长轴长为2a,(0<e<1)2、椭圆的简单几何性质:xyF1F2POxyF1F2PO
圆锥曲线知识点汇总 来自淘豆网m.daumloan.com转载请标明出处.