多阈值图像分割概述摘要:多阈值分割是现代图像处理中不可或缺的一部分。它主要指通过设定多个阈值将图像中感兴趣的目标标记出来。阈值的选取非常关键,它关系到分割后的结果的好坏。Ostu法也称之为最大类间法是多阈值图像分割中比较常用且完善的方法。由于多阈值图像分割对于图像处理的重要性,多阈值图像分割被广发应用于现代生产生活的方方面面。关键词:图像分割,多阈值,遗传算法,,是大多数图像分析和视觉系统的重要组成部分。其中阈值的自动选取,是图像分割中研究的重点和焦点。多阈值图像分割的应用领域非常广泛,如医学图像的分析诊断、交通中的智能识别、卫星遥感图片识别处理等等。、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。图像分割的方法有基于阈值的分割、基于区域的分割和基于边缘的图像分割。。阈值分割方法的特点是实现简单、计算量小、性能较稳定。所以多阈值图像分割成为图像分割中最基本和应用最广泛的分割技术。,阈值运算可以看作是对图像中某点的灰度、该点的某种局部特性以及该点在图像中的位置的一种函数,这种阈值函数可记作T(x,y,N(x,y),f(x,y))式中,f(x,y)是点(x,y)的灰度值;N(x,y)是点(x,y),可以得到3种不同类型的阈值,即点相关的全局阈值T=T(f(x,y))(只与点的灰度值有关)区域相关的全局阈值T=T(N(x,y),f(x,y))(与点的灰度值和该点的局部邻域特征有关)局部阈值或动态阈值T=T(x,y,N(x,y),f(x,y))(与点的位置、该点的灰度值和该点邻域特征有关)所有这些阈值化方法,根据使用的是图像的局部信息还是整体信息,可以分为上下文无关(non-contextual)方法(也叫做基于点(point-dependent)的方法)和上下文相关(contextual)方法(也叫做基于区域(region-dependent)的方法);根据对全图使用统一阈值还是对不同区域使用不同阈值,可以分为全局阈值方法(globalthresholding)和局部阈值方法(localthresholding,也叫做自适应阈值方法adaptivethresholding)。,多阈值图像模糊是根据图像的灰度,设定多个阈值,然后令图像中的每一个像素点的灰度与阈值作对比,之后将其归类。多阈值图像分割是一个模式识别归类的过程。,比如迭代法、最小误差法、简单统计法、分块采样法、阈值差值法、直方图变换法、边界点递归法、均衡对比度递归法、小波法、双峰法、p分位数法、直方图凹凸面分析法、适量保持法、模糊集方法、松弛法、水线阈值法、模拟退火算法、带噪图像多扫描法、势函数聚类法、势函数聚类自适应法、模糊率自适应法、归一化自适应法、直方图统计模型自适应法、正则割(nuct)、最大类间方差法(otsu法)、改进pso算法的otsu法、
多阈值图像分割 来自淘豆网m.daumloan.com转载请标明出处.