课题名称勾股定理教师姓名郭高娜单位北京市第二十中学学科数学任教年级初二教材人教版义务教育教科书八年级下第十七章第一节教学背景指导思想与理论依据张奠宙先生在《数学学科德育》中提出数学德育的一个基点:热爱数学;三个维度:人文精神,科学素养,、基本技能、基本思想、基本活动经验,还应使学生会用数学的思维方式进行思考,崇尚科学的理性精神,同时具有实事求是的态度、锲而不舍的精神,,本节课充分挖掘勾股定理的德育教育价值,让学生感受数学家的探索精神和对人类文明发展的贡献,培养民族自豪感,激发学习热情,进行爱科学教育,同时在学习过程中鼓励学生自主探索、合作交流,感受数学的美,切实落实情感领域的教学目标,,学生是知识建构的主体,,创造建构性的教学环境,让学生经历定理证明的探索过程,教师通过点评协助学生自我建构,使学生对知识的建构趋于完善,达到较好的学习效果.(二)对课标的理解与把握《数学课程标准》指出,“无论是设计、实施课堂教学方案,还是组织各类教学活动,不仅要重视学生学会知识技能,而且要激发学生的学习兴趣,通过独立思考或者合作交流感悟数学的基本思想,引导学生在参与数学活动的过程中积累基本经验,帮助学生形成认真勤奋、独立思考、合作交流、反思质疑等良好的学习习惯.”本节课从学生已有知识出发,创设情境,让学生经历“验证-证明-应用”,鼓励学生自主探索、合作交流,引导学生不断总结活动经验,从而对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.(三),它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足平方关系),,是后续学习“解直角三角形”,勾股定理在生产、,它的探索过程蕴涵着丰富的数学思想和文化内涵;它是中国古代史上一个比较有代表意义的定理,是对学生进行爱国主义教育的良好素材.(四)学生情况分析在知识上,学生已经学习了三角形、全等三角形的知识,了解了直角三角形的一些性质;在学习“整式的乘除”,学生初步建立了几何思维,,:理解勾股定理,能初步运用它解决有关直角三角形边长计算的一些简单问题;:引导学生经历“验证-证明”的数学学习过程,体会数形结合及从特殊到一般的数学思想,培养学生观察、比较、分析、推理的能力;:了解勾股定理的历史背景,感受数学文化,通过对我国古代研究勾股定理的成就介绍,培养民族自豪感,激发学习热情;在探索过程中,培养学生的合作交流意识和探索精神;欣赏勾股定理,:证明勾股定理教学难点:用面积法证明勾股定理教学资源、教学手段和主要教学方法多媒体课件、网格图,直尺、四个全等直角三角形纸片多媒体、教具辅助教学采
勾股定理教学设计 来自淘豆网m.daumloan.com转载请标明出处.