,几乎在所有的生物学过程中都扮演着重要的角色。因此,关于其结构与功能方面的研究一直是人们关注的焦点。蛋白质生物功能的关键在于其空间构象,一个伸展开来或随机排布的肽链是没有生物活性的。虽然X射线晶体学和NMR技术是蛋白质结构测定的有效手段,但却远远跟不上飞速发展的DNA测序,它使得蛋白质氨基酸序列的信息以爆炸的方式增长,由此迫切需要直接由蛋白质的氨基酸序列出发进行高级结构的预测。目前,对一定氨基酸序列的多肽链折叠形成特定空间结构蛋白质的机制了解甚少。虽然已经发展了多种经验和理论的计算方法预测蛋白质结构,并取得了某些成功,但总体来说仍是一个尚未解决的难题。4...Scientifically,thefoldingofaproteininall-putationalbiology...-VijayPande,StanfordUniversity5蛋白质的4级结构一级结构(Primary)-氨基酸序列二级结构(Secondary)-螺旋(alphahelix)-片层(betasheet)-盘绕(旋转)三级结构(Tertiary)-3D构象四级结构(Quaternary)-多肽链组合6了解3D结构的重要意义帮助我们了解蛋白质序列和结构之间的关系帮助我们了解蛋白质结构和功能之间的关系帮助我们发现新药物和改进药物的设计7影响3D结构的几个要素氨基酸的物理化学性质氨基酸的相对位置二面角的限制性氨基酸的亲水、疏水性局部二级结构倾向内部稳定化因子氢键,二硫键,盐桥8蛋白质结构的实验测定X-ray晶体衍射需要生长蛋白质晶体(这对一部分蛋白质几乎是不可能的,总之,不容易)衍射图样能进行反傅立叶变换来表征电子密度(这有“相”的问题)核磁共振谱(NMR)能提供距离约束,但很难发现对应的结构只适用于相对较小的蛋白质9蛋白质结构的理论预测晶体衍射(X-ray)和核磁共振(NMR)实验所获得的结构数据远远满足不了需要在人体蛋白中,只有3571个可在PDB数据库中找到30-50%的读码框(OpenReadingFrames)无法找到已知同源相似物理论预测可以用于结构相似性研究,进而有助于蛋白质功能分析10溶液中的蛋白质是一个受到各种力作用的原子系统:化学键力、氢键力、库仑力、范德华力等。在适当的条件下,这些作用力将促使几乎任意初始构形的蛋白质折叠成为稳定的、良好定义的3D结构(nativestate)(在毫秒到秒的时间量级)。这是蛋白质3D结构abinitio(denovo)预测的基础。
蛋白折叠及折叠中间体的素材 来自淘豆网m.daumloan.com转载请标明出处.