下载此文档

高三复数复习专题.doc


文档分类:中学教育 | 页数:约10页 举报非法文档有奖
1/10
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/10 下载此文档
文档列表 文档介绍
高三复数专题复习:一、复数的概念及运算:1、复数的概念:(1)虚数单位;(2)实部:,虚部:;(3)复数的分类();(4)相等的复数:2、复数的加、减、乘、除法则:(1)加减法具有交换律和结合律;(2)乘法具有交换律、结合律、分配律;(3)除法:。3、复数的共轭与模:(1);是纯虚数,反之不成立;(2)复数与点是一一对应关系,另:与关于轴对称,表示对应点与原点的距离。4、复数共轭运算性质:;5、复数模的运算性质:。6、复数的模与共轭的练习:。7、重要结论对复数z、、和自然数m、n,有,,(2),,,;,,,.(3),,.(4)设,,,,,、复数的三角形式:1、复数的三角形式概念:2、复数的三角形式的乘法公式:即:两个复数相乘,积的模等于两个复数的模之积,积的辐角等于两个复数的辐角之和。3、复数的三角形式的乘方公式(棣莫佛定理)即:复数的n(n∈N)次幂的模等于模的n次幂,辐角等于这个复数的辐角的n倍,这个定理称为棣莫佛定理。4、复数的三角形式的除法公式即:两个复数像除,商的模等于被除数的模除以除数的模,商的辐角等于被除数的辐角减去除数的辐角。三、复数中的方程问题:1、实系数一元二次方程的根的情况:对方程(其中且),令,当时,方程有两个不相等的实数根。当=0时,方程有两个相等的实根;当时,方程有两个共轭虚根:。2、复系数一元二次方程根的情况:对方程;3、一元二次方程的根与系数的关系:若方程(其中且)的两个根为,则;四、例题精选例1:已知,求;例2:已知,求;例3:设为虚数,为实数,且。(1)求的值及的实部的取值范围;(2)证明:为纯虚数;例4:已知关于的方程有两个根,且满足。(1)求方程的两个根以及实数的值;(2)当时,若对于任意,不等式对于任意的恒成立,求实数的取值范围。例5:已知复数满足,其中为虚数单位,,若,求的取值范围。例6:设虚数满足。(1)求的值;(2)若为实数,求实数的值;(3)若在复平面上对应的点在第一、第三象限角平方线上,求复数。例7:已知方程有两个根和,。(1)若,求实数;(2)若,求实数;例8:已知复数是方程的根,复数满足,求的取值范围。例9:关于的方程有实根,求一个根的模是2,求实数的值。例10:设两复数满足(其中且,),求是虚数。(1)求证:是定值,求出此定值;(2)当时,求满足条件的虚数的实部的所有项的和。例11:设两个复数满足,而且是虚数,当时,求因此满足条件的虚数的实部之和。例12:计算:(1)(2)(3)例13:给定复数,在,这八个值中,不同值的个数至多是___________。例14:已知下列命题(1);(2)为纯虚数;(3);(4);(5);(6).其中正确的命题是____________;例15:是否存在复数同时满足条件:①;②的实部、虚部为整数。若存在,求出复数,若不存在,说明理由。例16:设是已知复数,为任意复数且,则复数对应的点的轨迹是()A、以的对应点为圆心、1为半径的圆;B、以的对应点为圆心,1为半径的圆;C、以的对应点为圆心、为半径的圆;D、以的对应点为圆心,为半径的圆;例17:满足方程的复数对应的点的轨迹是()。A、圆B、椭圆C、双曲线D、抛物线例18:复平面内,满足的复数所对应的点的轨迹是()A、椭圆B、双曲线C、一条线段D、不存在例19:满足方程的复数对应的点的轨迹是

高三复数复习专题 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数10
  • 收藏数0 收藏
  • 顶次数0
  • 上传人业精于勤
  • 文件大小686 KB
  • 时间2020-03-14
最近更新