[经营管理]直方图.doc第八章直方图(Histogram)—、前言现场工作人员经常都要面对许多的数据,这些数据均来自于生产过程屮抽样或检查所得的某项产品的质量特性。如果我们应用统计绘图的方法,将这些数据加以整理,则生产过程中的质量散布的情形及问题点所在及过程、能力等,均可呈现在我们的眼前;我们即可利用这些信息来掌握问题点以采取改善对策。通常在生产现场最常利用的图表即为直方图。的定义•什么是直方图:即使诸如长度、重量、硬度、时间等计量值的数值分配情形能容易地看出的图形。直方图是将所收集的测定值特性值或结果值,分为几个相等的区间作为横轴,并将各区间内所测定值依所出现的次数累积而成的面积,用柱子排起来的图形。因此,也叫做柱状图。•使用直方图的目的:⑴了解分配的形态。⑵研究制程能力或计算制程能力。⑶过程分析与控制。⑷观察数据的真伪。⑸计算产品的不合格率。⑹求分配的平均值与标准差。⑺用以制定规格界限。⑻与规格或标准值比较。⑼调查是否混入两个以上的不同群体。()了解设计控制是否合乎过程控制。<:⑴次数分配将许多的复杂数据按其差异的大小分成若干组,在各组内填入测定值的出现次数,即为次数分配。相对次数在各组出现的次数除以全部的次数,即为相对次数。⑶累积次数(f)自次数分配的测定值较小的一端将其次数累积计算,即为累积次数。⑷极差(R)在所有数据中最大值和最小值的差,即为极差。()组距(h)极差/组数二舉距⑹算数平均数 _数据的总和除以数据总数,通常一X(x-bar)表示。X+X+……+Xnn工Xij=ln— EufX二X()+h 〜n⑺中位数(X)将数据由大至小按顺序排列,居于中央的数据为中位数。若遇偶位数时,则取中间两数据的平均值。⑻各组中点的简化值)入i・“ 欠数最多一组的组中点组距(h) 'x汙齐组组中点⑼众数(M)例:不合格数次 数次数最多为,不合格数是,故众数为。() 组中点(m)一组数据中最大值与最小值的平均值,(上组界+下组界)十二组中点() 标准差(o)f(工卩./)亍o=o=hX严八 斤(⑵样本标准差(S)羽f一型空s=n-l=hX| nVn-l三、直方图的制作•直方图的制作方法步骤:收集数据并记录收集数据时,对于抽样分布必须特别注意,不可取部分样品,应全部均匀地加以随机抽样。<cofTiP好好学习天天向上品管七大手法例:某厂成品尺寸规格为至伽,今按随机抽样方式抽取个样本,其测定值如附表,试制作直方图。步骤厶找出数据中的最大值(。与最小值(S)先从各行(或列)求出最大值,最小值,再予比较。最大值用“□”框起来,最小值用“CT框起来EX:))()得知:No. Ll= Sl=No. L= S=No. L= S==L=L=S=S=S=求得L=S=第八章直方步骤:求极差(R)数据最大值(D减最小值(S)二极差(R)例:R二-二步骤:决定组数组数过少,虽然可得到相当简单的表格,却失去次数分配的本质与意义;组数过多,虽然表格详尽,但无法达到简化的目的。通常,应先将异常值剔除再进行分组。一般可用数学家史特吉斯(Sturges)提出的公式,根据测定次数n来计算组数k,公式为:k=l+.logn例:n=则k二+.log=+.(.)=.即约可分为组或组一般对数据的分组可参照下表:数据数组数〜〜-~〜~〜〜例:取组步骤:求组距(h)R⑴组距=极
[经营管理]直方图 来自淘豆网m.daumloan.com转载请标明出处.