下载此文档

初二数学下册二次根式.doc


文档分类:中学教育 | 页数:约10页 举报非法文档有奖
1/10
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/10 下载此文档
文档列表 文档介绍
一、知识要点:1)形式:一般地,把式子叫做二次根式。二次根式的根指数为2次。2)意义:被开方数时,才有意义,没有意义。注意:是被开方数,是根号里面的所有内容,能够是单项式,也能够是多项式。特别地,当均有意义时,。即,一个式子中,有2个被开方数互为相反数时,则这两个被开方数均为0。思考:设:都是实数,且满足。求:的值注意:是个非负数特别地,,均为非负数,当几个非负数的和为0时,则每个非负数均为0。3)利用给多项式在实数范围内分解因式反过来,这样任何一个非负数都能写成一个数(其正的平方根)的平方。特别地,这样可把在有理数范围内不能分解因式的式子在实数范围内分解因式。4)最简二次根式的条件:1、被开方数中不含有分母(或小数)2、被开方数中不含能开得尽方的因数或因式。特别:当被开方数为多项式时,先因式分解分解成因式再判断根式是否是最简。5)同类二次根式的概念同类二次根式条件:化简后,1、被开方相同2、都是二次根式特别提醒:判断二次根式是否同类二次根式,必须先将二次根式化为最简二次根式,再判断。6)根式的化简的化简:,即=7)根式的乘除法积(商)的算术平方根:注意:1)利用公式时,要注意a,b的符号。当a,b为负数时,能够经过添(减)负号,将其变为正数,添(减)负号时,不要改变式子的值。2)在化简时,首先要根式的意义确定各字母的符号,不能确定的要分开讨论。3)将根号里的因式移到根号外时,要去平方并加绝对值。将根号外的非负因式移到根号内添平方:如果要移动的因式是负数移到根号内时,要先添负号变正。在移动因式之前,一定要先判断因式的符号。8)根式的加减法二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并。合并同类二次根式与在多项式中合并同类项类似,因此,二次根式的加减类似于整式的加简。9)二次根式的混合运算分母有理化问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个含有二次根式的代数式互为有理化因式。的有理化因式为的有理化因式为(两数和的有理化因式为这两数的差,两数的差的有理化因式为这两数的和)。10)混合运算乘除法法则:a+b=(a+c)(c0)(a0)加减法法则:合并同类二次根式(把根式前的系数相加减)根号不变。混合计算法则,有括号先算括号,先乘除,后加减,能化简尽量先化简。二、典型例题【例1】下列各式1),其中是二次根式的是_________(填序号).举一反三:1、下列各式中,一定是二次根式的是()A、B、C、D、2、在、、、、中是二次根式的个数有______个【例2】若式子有意义,则x的取值范围是.[来源:学*科*网Z*X*X*K]举一反三:1、使代数式有意义的x的取值范围是()A、x>3 B、x≥3 C、x>4 D、x≥3且x≠42、使代数式有意义的x的取值范围是3、如果代数式有意义,那么,直角坐标系中点P(m,n)的位置在( )A、第一象限 B、第二象限 C、第三象限 D、第四象限【例3】若y=++,则x+y=解题思路:式子(a≥0),,y=,则x+y=举一反三:1、若,则x-y的值为()A.-、若x、y都是实数,且y=,求xy的值3、当取什么值时,代数式取值最小,并求出这个最小值。1、已知a是整数部分,b是的小数部分,求的值。2、若的整数部分是a,小数部分是b,则。3、若的整数部

初二数学下册二次根式 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数10
  • 收藏数0 收藏
  • 顶次数0
  • 上传人业精于勤
  • 文件大小507 KB
  • 时间2020-03-17
最近更新