下载此文档

初二数学一次函数知识点总结.doc


文档分类:中学教育 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
初二数学一次函数知识点总结知识点1一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数. 知识点2函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。.不必一定选取这两个特殊点. 画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可. 知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向; ①k0时,y的值随x值的增大而增大; ②k﹤O时,y的值随x值的增大而减小. (2)|k|大小决定直线的倾斜程度,即|k|越大①当b0时,直线与y轴交于正半轴上; ②当b0时,直线与y轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数. (4)由于k,b的符号不同,直线所经过的象限也不同; ①如图所示,当k0,b0时,直线经过第一、二、三象限(直线不经过第四象限); ②如图所示,当k0,b ③如图所示,当k﹤O,b0时,直线经过第一、二、四象限(直线不经过第三象限); ④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限). (5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的. 知识点4正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点; (2)当k0时,图象经过第一、三象限,y随x的增大而增大; (3)当k0时,图象经过第二、四象限,y随x的增大而减小. 知识点5点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b; (2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上. 例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上. 知识点6确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值. (2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值. 知识点7待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,:函数y=kx+b中,k,b就是待定系数. 知识点8用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b; (2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k与b的值,得到函数表达式. 思想方法小结(1)函数方法.(2)数形

初二数学一次函数知识点总结 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数6
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1294838662
  • 文件大小24 KB
  • 时间2020-03-26