切线长定理新课学习50°1、如何过⊙O外一点P画出⊙O的切线?2、这样的切线能画出几条?如下左图,借助三角板,我们可以画出PA是⊙O的切线。3、如果∠P=50°,求∠AOB的度数130°画一画P在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长·OPAB切线与切线长是一回事吗?切线长概念··它们有什么区别与联系呢?切线和切线长是两个不同的概念:1、切线是一条与圆相切的直线,不能度量;2、切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。切线和切线长OPAB比一比OABP思考:已知⊙O切线PA、PB,A、B为切点,把圆沿着直线OP对折,你能发现什么?12折一折PA=PB∠1=∠2请证明你所发现的结论。APOBPA=PB∠OPA=∠OPB证明:∵PA,PB与⊙O相切,点A,B是切点∴OA⊥PA,OB⊥PB即∠OAP=∠OBP=90°∵OA=OB,OP=OP∴Rt△AOP≌Rt△BOP(HL)∴PA=PB∠OPA=∠OPB试用文字语言叙述你所发现的结论证一证PA、PB分别切⊙O于A、BPA=PB∠1=∠2从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。几何语言:反思:切线长定理为证明线段相等、角相等提供新的方法OPAB切线长定理12APOB若连结两切点A、B,?:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠1=∠2∴△PAB是等腰三角形,PM为顶角的平分线∴OP垂直平分ABM试一试12APO。B若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?=CB证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠1=∠2∴PC=PC∴△PCA≌△PCB∴AC=BCC12。PBAO(3)连结圆心和圆外一点(2)连结两切点(1)分别连结圆心和切点反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。想一想
切线长定理 来自淘豆网m.daumloan.com转载请标明出处.