毕业论文(设计)题目基于特征的图像分割技术学生姓名万亚堃 学号20111334044 学院电子与信息工程学院 专业通信工程 指导教师 课题研究意义 -均值聚类算法的工作原理: -means聚类算法的一般步骤: -均值聚类法的缺点: -均值聚类图像分割算法 19参考文献 20致谢 22附一:K-均值聚类改进前的matlab源程序 23基于特征的图像分割技术万亚堃南京信息工程大学电子与信息工程学院,江苏南京210044摘要:图像分割是指将一副图像分解为若干互不交叠的有意义且具有相同属性的区域。图像分割是数字图像处理中的一项关键技术,其分割的准确性直接影响后续任务的有效性,因此具有十分重要的意义。现有的分割算法在不同程度上取得了一定的成功,但是图像分割的很多问题还远远没有解决,该方面的研究仍然面临很多挑战。本文采用改进的K均值算法进行图像分割,在颜色空间选取上也采用比较好的RBG颜色空间,对图像分别进行了颜色特征提取与纹理特征提取,最后进行了原始K均值算法与改进后的K均值算法分割图形的比较,实验结果表明本文提出的方法可以很好的从图像中分割出有意义的区域,更突出目标区域。关键词:图像分割,颜色空间,K均值聚类。BasedonthecharacteristicsoftheimagesegmentationtechnologyWanyakunNUIST,Nanjing210044,ChinaAbstract:,uracydirectlyaffecttheeffectivenessofthesubsequenttask,,ess,butisfarfromsolvedmanyproblemsofimagesegmentation,,-meansalgorithmforimagesegmentation,ontheselectionofcolorspaceisbetterHUVbasedoncolorspace(bylinearRBGcolorspacetransformation).Imagefeatureandcolorfeatureextractionoftexturefeatureextractionrespectively,finallyhascarriedontheoriginalk-meansalgorithmandtheimprovedk-:Imagesegmentation,colorspace,k- 课题研究意义图像分割是数字图像处理中的一项关键技术,它通常用于对图像进行分析、识别、编码等处理之前的预处理环节,其分割的准确性直接影响后续任务的有效性,因此具有十分重要的意义。自上世纪70年代以来,已经出现了多种图像分割方法,而每一种图像分割方法都是为了解决一些特定的应用问题
k均值算法图像分割 来自淘豆网m.daumloan.com转载请标明出处.