下载此文档

立体几何解题技巧及高考类型题—老师专用.doc


文档分类:中学教育 | 页数:约25页 举报非法文档有奖
1/25
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/25 下载此文档
文档列表 文档介绍
立体几何解题技巧及高考类型题—老师专用【命题分析】高考中立体几何命题特点:,“角”与“距离”、性质多在选择题,、四棱柱、三棱锥的问题,---22分之间,题型一般为1个选择题,1个填空题,1个解答题.【考点分析】掌握两条直线所成的角和距离的概念,对于异面直线的距离,、直线和平面所成的角、、二面角的平面角、两个平行平面间的距离的概念.【高考考查的重难点】空间距离和角“六个距离”:1、两点间距离;2、点P到线l的距离(Q是直线l上任意一点,u为过点P的直线l法向量);3、两异面直线的距离(P、Q分别是两直线上任意两点,u为两直线公共法向量);4、点P到平面的距离(Q是平面上任意一点,u为平面法向量);直线与平面的距离(P为直线上的任意一点、Q为平面上任意一点,u为平面法向量);平行平面间的距离(P、Q分别是两平面上任意两点,u为两平面公共法向量);“三个角度”:1、异面直线角[0,],cos=;【辨】直线倾斜角围[0,);2、线面角[0,],sin=或者解三角形;3、二面角[0,],cos或者找垂直线,解三角形。不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,:一是利用传统的几何方法,二是利用空间向量。其中,利用空间向量求空间距离和角的套路与格式固定,是解决立体几何问题这套强有力的工具时,使得高考题具有很强的套路性。【例题解析】考点1点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面的垂足,、(卷)如图,正三棱柱的所有棱长都为,为中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的大小;(Ⅲ):本小题主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、:解法一:(Ⅰ)取中点,,.正三棱柱中,平面平面, ,在正方形中,分别为的中点,,.在正方形中,,平面.(Ⅱ)设与交于点,在平面中,作于,连结,由(Ⅰ)得平面.,,由等面积法可求得,又,.所以二面角的大小为.(Ⅲ)中,,.在正三棱柱中,,得,.:(Ⅰ)取中点,,.在正三棱柱中,平面平面,,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,,,.,,,.平面.(Ⅱ),.,,(Ⅰ)知平面,为平面的法向量.,.二面角的大小为.(Ⅲ)由(Ⅱ),为平面法向量,.:本例(Ⅲ),把不易直接求的B点到平面的距离转化为容易求的点K到平面的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,,、已知三棱锥,底面是边长为的正三角形,棱的长为2,,:由于异面直线CD与SE的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,:如图所示,取BD的中点F,连结EF,SF,CF,为的中位线,∥∥面,,设其为h,由题意知,,D、E、F分别是AB、BC、BD的中点,在Rt中,在Rt中,又由于,即,:通过本例我们可以看到求空间距离的过程,,主要考查点面、线面、,在棱长为2的正方体中,G是的中点,:把线面距离转化为点面距离,:解法一∥平面,上任意一点到平面的距离皆为所求,以下求点O平面的距离,,,平面,又平面平面,两个平面的交线是,作于H,则有平面,,.∥平面,上任意一点到平面的距离皆为

立体几何解题技巧及高考类型题—老师专用 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数25
  • 收藏数0 收藏
  • 顶次数0
  • 上传人beny00001
  • 文件大小1.58 MB
  • 时间2020-08-11
最近更新