①分数的引入,解决了在自然数集中不能整除的矛盾。负数②③整数①分数②负数的引入,解决了在正有理数集中不够减的矛盾。③无理数的引入,解决了开方开不尽的矛盾。回顾历史数系扩充实数虚数复数虚数的引入,解决了负数不能开平方的矛盾。,在复数系中规定的加法运算、乘法运算,与原来的实数系中规定的加法运算、乘法运算协调一致:加法和乘法都满足交换律和结合律,乘法对加法满足分配律。回顾历史、::设复数z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d):两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减).、结合律,即对任何z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).,解决下面这个问题吗?:数系扩充后,在复数系中规定的加法运算、乘法运算,与原来的实数系中规定的加法运算、乘法运算协调一致:加法和乘法都满足交换律和结合律,乘法对加法满足分配律。即对任何z1,z2,z3有:z1﹒z2=z2﹒z1;(z1﹒z2)﹒z3=z1﹒(z2﹒z3);z1﹒(z2+z3)=z1﹒z2+z1﹒:设复数z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)、:;-1;(两个复数的乘积仍为复数).(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad).
《复数的乘除法》ppt课件 来自淘豆网m.daumloan.com转载请标明出处.