圆的切线证明1(2011中考).如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E,(1)求证:PB为⊙O的切线;2已知⊙O中,AB是直径,过B点作⊙O的切线,连结CO,若AD∥OC交⊙O于D,求证:CD是⊙O的切线。3如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切. D 4(2008年厦门市)已知:如图,中,,以为直径的交于点,于点.(1)求证:是的切线;5已知:如图⊙O是△ABC的外接圆,P为圆外一点,PA∥BC,且A为劣弧的中点,割线PBD过圆心,交⊙0于另一点D,连结CD.(1)试判断直线PA与⊙0的位置关系,并证明你的结论.(2)当AB=13,BC=24时,求⊙,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3).(2010北京中考)已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,ÐDOC=2ÐACD=90°。(1)求证:直线AC是圆O的切线;(2)如果ÐACB=75°,圆O的半径为2,求BD的长。8、(2011•北京)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;9已知⊙O的半径OA⊥OB,点P在OB的延长线上,连结AP交⊙O于D,过D作⊙O的切线CE交OP于C,求证:PC=CD。10(2013年广东省9分)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(3)求证:BE是⊙O的切线。 11(7分)(2013•珠海)如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A(1)求证:BC为⊙O的切线;(2)求∠---------------90°(垂直)有90°------------------证全等有⊥------------------证∥,错过来利用角+角=90°关注:等腰(等边)三线合一;中位线;直角三角形1(2011中考).如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E,(1)求证:PB为⊙O的切线;2已知⊙O中,AB是直径,过B点作⊙O的切线,连结CO,若AD∥OC交⊙O于D,求证:CD是⊙O的切线。 点悟:要证CD是⊙O的切线,须证CD垂直于过切点D的半径,由此想到连结OD。 证明:连结OD。 ∵AD∥OC, ∴∠COB=∠A及∠COD=∠ODA ∵OA=OD,∴∠ODA=∠OAD ∴∠COB=∠COD ∵CO为公用边,OD=OB ∴△COB≌△COD,即∠B=∠ODC ∵BC是切线,AB是直径, ∴∠B=90°,∠ODC=90°, ∴CD是⊙O的切线。 点拨:辅助线OD构造于“切线的判定定理”与“全等三角形”两个基本图形,先用切线的性质定理,后用判定定理。3如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切. D 3(2008年厦门市)已知:如图,中,,以为直径的交于点,于点.(1)求证:是的切线;(2)若,求的值.(1)证明:,又,又于,,是的切线4已知:如图⊙O是△ABC的外接圆,P为圆外一点,PA∥BC,且A为劣弧的中点,割线PBD过圆心,交⊙0于另一点D,连结CD.(1)试判断直线PA与⊙0的位置关系,并证明你的结论.(2)当AB=13,BC=24时,求⊙,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3).(2010北京中考)已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,ÐDOC=2ÐACD=90°。(1)求证:直线AC是圆O的切线;(2)如果ÐACB=75°,圆O的半径为2,求BD的长。 6、(2011•北京)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线; ⊙O的半径OA⊥OB,点P在OB的延长线上,连结AP交⊙O于D,过D作⊙O的切线CE交OP于C,求证:PC=C
圆的切线证明 来自淘豆网m.daumloan.com转载请标明出处.