七年级下册数学知识点整合+第一章整式的运算一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。单独的一个数或一个字母也是单项式。一个单项式中,所有字母的指数的和叫做这个单项式的次数。注意:1、单项式中的数与字母或者字母与字母之间都是乘积关系,如,所以是单项式,而不是单项式。2、如果一个单项式只含有字母因数,则它的系数就是1或者-1,此时“1”通常省略不写;π是常数,应作为单项式的系数;单项式的系数包括它前面的符号。3、单项式的次数是所有字母的指数和,数的指数和π的指数不能与其他字母的指数相加作为单项式的次数,如的次数是6(=2+4),、非零常数的次数是0,而不是1。如,3是一个非零常数,这个单项式中没有字母,、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。注意:1、多项式中的项包括它前面的符号。2、对于一个多项式,知道了它的项数之后,我们可以称这个多项式为几次几项式,如称为三次三项式。解题方法总结:单项式的次数是把所有字母的指数相加,不包含数与π的指数;多项式的次数是把多项式中每项的次数都算出来,次数最高的单项式的次数就是这个多项式的次数。整式是单项式和多项式的统称,区分代数中的整式关键是分母中不能含有字母。三、整式:单项式和多项式统称为整式。注意:区分代数式中的整式的关键是看分母中是否含有字母,如是整式,但的分母中含有字母,所以它不是整式。四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。注意:1、去括号时,如果括号前面带“-”号,去括号时里边各项都要变号。2、如果括号前面有倍数,往括号里乘时,各项都分别相乘。五、幂的运算性质:1、同底数幂的乘法:注意:1、三个或三个以上同底数幂相乘时,也具有这一性质,如(m、n、p均为正整数)2、此性质可以逆用3、底数不同的幂相乘,不能应用此法则解题方法归纳:确定好是否是同底数幂的乘法,如果底数不同,进行适当的转化,使之成为同底数幂。同底数幂的乘法要与合并同类项区分开,即,4、底数是和、差或者其他形式的幂相乘,应把这些和或差看作一个整体,如2、幂的乘方:注意:1、此公式可以拓展成为:(m、n、p均为正整数)2、区别幂的乘方与同底数的幂的乘法。这也是选择题、填空题、计算题考察的重点。3、此性质可以逆用3、积的乘方:注意:1、此公式可以拓展成为:(n为正整数)2、此性质可以逆用4、同底数幂的除法:六、零指数幂和负整数指数幂:1、零指数幂:解题方法归纳:对于出现同底数幂的除法的式子可直接运用其除法法则计算,若不是同底数,则进行转化,使之成为同底数,有时逆用公式计算更简便。出现零指数幂和负整数指数幂时,直接套用公式,将其转化为正整数指数幂的形式。2、负整数指数幂:七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。3、多项式乘以多项式:法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。4、单项式除以单项式:法则:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。5、多项式除以单项式:解题方法归纳:整式乘法实质上就是运用乘法交换律、结合律、分配律、有理数的乘法法则和同底数幂的乘法法则进行的计算。法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。八、整式乘法公式:1、平方差公式:注意:1、平方差公式中的a、b可以是具体的数,也可以是字母、单项式、多项式,也就是说,a、b代表任一个代数式。如2、此公式可以逆用2、完全平方公式:注意:1、公式中的a、b可以是具体的数,也可以是字母、单项式、多项式,也就是说,a、b代表任一个代数式。2、公式右边2ab的符号取决于左边二项式中两项的符号。若左边的两项同号,则2ab的符号为“+”,若这两项异号,则2ab的符号为“-”。3、此公式可以逆用。解题方法归纳:完全平方公式可以变形成为以下几种:;;;4、可以拓展为:九、整体代入求值法:如果从已知条件中不能够求出字母的值,但所求的代数式,如果对某些项添上括号或者拆项之后正好是已知条件,则可以利用整体思想代入求值。例:已知,求的值。第二章平行线与相交线一、余角和补角:1、余角:定义:如果两个角的和是直角,那么称这两个角互为余角。性质:同角或等角的余角相等。2、补角:定义:如果两个角的和是平角,那么称这
七年级下数学各章知识点 来自淘豆网m.daumloan.com转载请标明出处.