下载此文档

二次函数应用.doc


文档分类:高等教育 | 页数:约3页 举报非法文档有奖
1/3
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/3 下载此文档
文档列表 文档介绍
(通案)课题:(1)(内容、学情分析)教学目标1、会利用二次函数的知识解决面积、、经过面积、利润等最值问题的学习,学会分析问题,解决问题的方法,::☆预习导航☆一、链接:(1)在二次函数()中,当>0时,有最值,最值为;当<0时,有最值,最值为.(2)二次函数y=-(x-12)2+8中,当x=时,、(P2)中,要使围成的水面面积最大,那么它的长应是多少?它的最大面积是多少?分析:这是一个求最值的问题。要想解决这个问题,就要首先将实际问题转化成数学问题。在前面的学习中我们已经知道,这个问题中的水面长x与面积S之间的满足函数关系式S=-x2+20x。通过配方,得到S=-(x-10)2+100。由此可以看出,这个函数的图象是一条开口向下的抛物线,其顶点坐标是(10,100)。所以,当x=10m时,函数取得最大值,为S最大值=100(m2)。所以,当围成的矩形水面长为10m,宽为10m时,它的面积最大,最大面积是100m2。☆合作探究☆问题:某商场的一批衬衣现在的售价是60元,每星期可买出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知该衬衣的进价为40元,如何定价才能使利润最大?①问题中定价有几种可能?涨价与降价的结果一样吗?②设每件衬衣涨价x元,获得的利润为y元,则定价元,每件利润为元,每星期少卖件,实际卖出件。所以Y=。(0<X<30)何时有最大利润,最大利润为多少元?③设每件衬衣降价x元,获得的利润为y元,则定价为元,每件利润为元,每星期多卖件,实际卖出件。所以Y=。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆归纳反思☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆达标检测☆1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y

二次函数应用 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数3
  • 收藏数0 收藏
  • 顶次数0
  • 上传人ogthpsa
  • 文件大小30 KB
  • 时间2020-10-19
最近更新