下载此文档

高二下知识点总结.doc


文档分类:中学教育 | 页数:约12页 举报非法文档有奖
1/12
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/12 下载此文档
文档列表 文档介绍
数学选修2-2知识点总结
一、导数
1.函数的平均变化率为
注1:其中是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数在处的瞬时变化率是,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.
;函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。
5、常见的函数导数和积分公式
函数
导函数
不定积分
0
————————
————————
6、常见的导数和定积分运算公式:若,均可导(可积),则有:
和差的导数运算
积的导数运算
特别地:
商的导数运算
特别地:
复合函数的导数
微积分基本定理
(其中)
和差的积分运算
特别地:
积分的区间可加性
:①求函数f(x)的导数②令>0,解不等式,得x的围就是递增区间.③令<0,解不等式,得x的围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
(x)的极值的步骤:(1)确定函数的定义域。(2) 求函数f(x)的导数 (3)求方程=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值
:求在上的最大值与最小值的步骤如下: ⑴求在上的极值;⑵将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;
9.求曲边梯形的思想和步骤:分割近似代替求和取极限 (“以直代曲”的思想)

根据定积分的定义,不难得出定积分的如下性质:
性质1
性质5 若,则
①推广:
②推广:
11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.
( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x轴上方的图形面积;
(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;
当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积.
12.物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功。
推理与证明知识点
:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。
归纳推理是由部分到整体,由个别到一般的推理。
归纳推理的思维过程
大致如图: 实验、观察
概括、推广
猜测一般性结论
: ①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。
:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。

观察、比较
联想、类推
推测新的结论
:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。
19.演绎推理的主要形式:三段论
20.“三段论”可以表示为:①大前题:M是P②小前提:S是M ③结论:S是P。
其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。
,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。
“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。
,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。要注意

高二下知识点总结 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数12
  • 收藏数0 收藏
  • 顶次数0
  • 上传人tswng35
  • 文件大小682 KB
  • 时间2020-11-09