下载此文档

高中数学数列知识点解析样稿.doc


文档分类:中学教育 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
高中数学 第三章 数列
考试内容:
数学探索©.
数学探索©.等差数列前n项和公式.
数学探索©.等比数列前n项和公式.
数学探索©:
数学探索©(1)了解数列概念,了解数列通项公式意义了解递推公式是给出数列一个方法,并能依据递推公式写出数列前几项.
数学探索©(2)了解等差数列概念,掌握等差数列通项公式和前n项和公式,并能处理简单实际问题.
数学探索©(3)了解等比数列概念,掌握等比数列通项公式和前n项和公式,井能处理简单实际问题.
§03. 数 列 知识关键点
数列
数列定义
数列相关概念
数列通项
数列和函数关系

项数
通项
等差数列
等差数列定义
等差数列通项
等差数列性质
等差数列前n项和
等比数列
等比数列定义
等比数列通项
等比数列性质
等比数列前n项和
等差数列
等比数列
定义
递推公式


通项公式
()
中项
()
()
前项和
关键性质
1. ⑴等差、等比数列:
等差数列
等比数列
定义
通项公式
=+(n-1)d=+(n-k)d=+-d
求和公式
中项公式
A= 推广:2=
。推广:
性质
1
若m+n=p+q则
若m+n=p+q,则。
2
(其中)。
若成等比数列 (其中),则成等比数列。
3
. 成等差数列。
成等比数列。
4

5
⑵看数列是不是等差数列有以下三种方法:

②2()
③(为常数).
⑶看数列是不是等比数列有以下四种方法:

②(,)①
注①:i. ,是a、b、c成等比双非条件,即a、b、c等比数列.
ii. (ac>0)→为a、b、c等比数列充足无须要.
iii. →为a、b、c等比数列必需不充足.
iv. 且→为a、b、c等比数列充要.
注意:任意两数a、c不一定有等比中项,除非有ac>0,则等比中项一定有两个.
③(为非零常数).
④正数列{}成等比充要条件是数列{}()成等比数列.
⑷数列{}前项和和通项关系:
[注]: ①(可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若不为0,则是等差数列充足条件).
②等差{}前n项和 →能够为零也可不为零→为等差充要条件→若为零,则是等差数列充足条件;若不为零,则是等差数列充足条件.
③非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)
2. ①等差数列依次每k项和仍成等差数列,其公差为原公差k2倍;
②若等差数列项数为2,则;
③若等差数列项数为,则,且,
.
3. 常见公式:①1+2+3 …+n =


[注]:熟悉常见通项:9,99,999,…; 5

高中数学数列知识点解析样稿 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息