(一)
教学目的:
从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.
了解成比例线段的概念,会确定线段的比.
重点、难点
重点:相似图形的概念与成比例线段的概念.
难点:成比例线段概念.
观察图片,体会相似图形
1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗? (-1)( -2)
2 、小组讨论、交流.得到相似图形的概念 .
什么是相似图形?
3 、思考:-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?
观察思考,小组讨论回答:
二、成比例线段概念
1.问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的比是多少?
归纳:两条线段的比,就是两条线段长度的比.
2、成比例线段:
对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.
【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作或a:b=c:d;(4)若四条线段满足,则有ad=bc.
三、巩固练习
,从放大镜里看到的三角尺和原来的三角尺相似吗?
2、填空题
形状 的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的 或 而得到的。
3.如图,请测量出右图中两个形似的长方形的长和宽,
(1)(小)长是_______cm,宽是_______cm; (大)长是_______cm,宽是_______cm;
(2)(小) ;(大) .
(3)你由上述的计算,能得到什么结论吗?
4.在比例尺是1:8000000的“中国政区”地图上,,那么福州与上海之间的实际距离是多少?
5.AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?
课题 图形的相似(二)
一、教学目标
1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.
2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.
二、重点、难点
1.重点:相似多边形的主要特征与识别.
2.难点:运用相似多边形的特征进行相关的计算.
三、探索新知
1、观察图片,体会相似图形性质(教材P36页)
(1) -4(1)中的△A1B1C1是由正△ABC放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?
-4
(2)-4(2)中两个相似的正六边形,是否也能得到类似的结论?(3)什么叫成比例线段?(阅读课本回答)
、如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.
问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.
3.【结论】:
(1)相似多边形的特征:相似多边形的对应角______,对应边的比_______.
反之,如果两个多边形的对应角______,对应边的比_______,那么这两个多边形_______.几何语言:在⊿ABC和⊿A1B1C1中
若.
则⊿ABC和⊿A1B1C1相似
(2)相似比:相似多边形________的比称为相似比.
问题:相似比为1时,相似的两个图形有什么关系?
结论:相似比为1时,相似的两个图形______,因此________形是一种特殊的相似形.
四、例题讲解
例1(补充)(选择题)下列说法正确的是( )
A.所有的平行四边形都相似 B.所有的矩形都相似
C.所有的菱形都相似 D.所有的正方形都相似
分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D.
例2、例(教材P37页)
-6,四边形ABCD和EFGH相似,求角的大小和EH的长度.
27章图形的相似导学案 来自淘豆网m.daumloan.com转载请标明出处.