. . . . .
: .
三角形的五心定理
一、三角形五心定义
内心是三角形的三内角平分线交点.也是三角形内切圆的圆心.
重心是三角形的三条中线的交点. (重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)
外心是三角形的三边的垂直平分线的交点. 三角形外接圆的圆心.
垂心是三角形的三条高的交点
旁心是三角形一内角平分线和另外两顶点处的外角平分线的交点 . 三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心
二、三角形五心性质
内心: 1、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一.
2、为所在平面上任意一点,点是内心的充要条件是:向量 .
3、为三角形的内心,、、分别为三角形的三个顶点,延长交 边于,则有.
重心: 1、重心到顶点的距离与重心到对边中点的距离之比为2∶1.
2、重心和三角形3个顶点组成的3个三角形面积相等. 即重心到三条边的距离与三条边的长成反比.
3、重心到三角形3个顶点距离的平方和最小.
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为.
外心: 1、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合.
2、若是的外心,则(为锐角或直角)或(为钝角).
3、计算外心的坐标应先计算下列临时变量:,,分别是三角形三个顶点连向另外两个顶点向量的点乘。, ,;.重心坐标:.
4、外心到三顶点的距离相等.
垂心:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆.
2、三角形外心、重心和垂心三点共线,且.(此直线称为三角形的欧拉线(Euler line))
3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍.
4、垂心分每条高线的两部分乘积相等.
旁心: 1、每个三角形都有三个旁心.
2、旁心到三边的距离相等.
注:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。
三、三角形五心性质证明
垂心:已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB .
证明:
连接DE ∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆
∴∠ADE=∠ABE
∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC
∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE
又∵∠ABE+∠BAC=90度 ∴∠ACF+∠BAC=90度 ∴CF⊥AB
重心:三角形的重心到顶点的距离是它到对边中点距离的两倍.
证明:如图:△ABC中D为BC中点,E为AC中点,F为
三角形五心性质 来自淘豆网m.daumloan.com转载请标明出处.