借助模型——搞定空间几何体的外接球与内切球
一、有关定义
1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.
2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.
3.内切球的定义:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.
2.结论:
结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;
结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;
结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;
结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;
结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;
结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;
结论7:圆锥体的外接球球心在圆锥的高所在的直线上;
结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;
结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.
三、内切球的有关知识与方法
1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).
2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).
3.正多面体的内切球和外接球的球心重合.
4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.
5.基本方法:
(1)构造三角形利用相似比和勾股定理;
(2)体积分割是求内切球半径的通用做法(等体积法).
外接球内切球问题 来自淘豆网m.daumloan.com转载请标明出处.