等差数列
[教学目标]
知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解 等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题.
:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般"这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。
:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。
[教学重难点]感
1。教学重点:等差数列的概念的理解,通项公式的推导及应用.
2.教学难点:(1)对等差数列中“等差”两字的把握;
(2)等差数列通项公式的推导。
[教学过程]
课题引入
创设情境 引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)
(1)、在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:
1682,1758,1834,1910,1986,( )
你能预测出下次观测到哈雷慧星的大致时间吗?判断的依据是什么呢?
(2)、通常情况下,从地面到11km的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗玛峰峰顶的温度。
距地面的
高度(km)
温度(℃)
1
2
3
38
32
26
4
5
20
14
6
8
…
…
思考:依据前面的规律, 填写(3)、(4):
(3) 1,4,7,10,( ),16,…
(4) 2,0,—2,-4,-6,( ),…
它们共同的规律是?
从第二项起,每一项与前一项的差等于同一个常数。
我们把有这一特点的数列叫做等差数列。
新课探究
(一)等差数列的定义
1、等差数列的定义
如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。
(1)定义中的关健词有哪些?
(2)公差d是哪两个数的差?
2、等差数列定义的数学表达式:
试一试:它们是等差数列吗?
(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10…
(2) 5,5,5,5,5,5,…
(3) —1,-3,-5,-7,-9,…
(4) 数列{an},若an+1—an=3
3、等差中顶定义
在如下的两个数之间,插入一个什么数后这三个数就会成为一个等差数列:
(1)、2 ,( ) ,4 (2)、-12,( ) ,0 ( 3 ) a ,( ),b
如果在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫做a与b的等差中项。
等差数列的通项公式
探究1:等差数列的通项公式(求法一)
如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?
根据等差数列的定义可得:
,,,…。
所以:,
,
,
……
由此得,
因此等差数列的通项公式就是: ,
探究2:等差数列的通项公式(求法二)
《等差数列》教案 来自淘豆网m.daumloan.com转载请标明出处.