本次授课知识点总概
二、具体授课内容:
类型一:正比例函数与一次函数定义
1、当m为何值时,函数y=-(m-2)x+(m-4)是一次函数?
举一反三:
【变式1】如果函数是正比例函数,那么( ).
A.m=2或m=0 B.m=2 C.m=0 D.m=1
【变式2】已知y-3与x成正比例,且x=2时,y=7.
(1)写出y与x之间的函数关系式;
(2)当x=4时,求y的值;
(3)当y=4时,求x的值.
类型二:待定系数法求函数解析式
2、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.
思路点拨:图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可.
举一反三:
【 变式1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg的重物时,,求这个一次函数的表达式.
【变式2】已知直线y=2x+1.
(1)求已知直线与y轴交点M的坐标;
(2)若直线y=kx+b与已知直线关于y轴对称,求k,b的值.
【变式3】判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.
类型三:函数图象的应用
3、图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,回答下列问题:
(1)汽车共行驶了___________ km;
(2)汽车在行驶途中停留了___________ h;
(3)汽车在整个行驶过程中的平均速度为___________ km/h;
(4).
举一反三:
【变式1】图中,射线l甲、l乙分别表示甲、乙两运动员在自行车比赛中所走的路程s与时间t的函数关系,求它们行进的速度关系。
【变式2】(2011四川内江)小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示。放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )
【变式3】某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如图所示:
根据图象解答下列问题:
(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少
一次函数图像 来自淘豆网m.daumloan.com转载请标明出处.