比赛场次学材分析 1. 了解“从简单的情形开始寻找规律”的解决问题的策略,提高解决问题的能力。 2. 会用列表、画图的方式寻找实际问题中蕴含的简单的规律,体会图、表的简洁性和有效性。学情分析“比赛场次”的问题在三年级下学期时学生有过初步接触,当时球队数限制在 4 支以内,引导学生用画图或列表的方法来解决问题。本内容是在上述基础上的进一步发展,主要借助解决“比赛场次”的实际问题,引导学生通过列表、画图发现规律,体会解决问题的策略。学习目标 1、使学生理解体育比赛中的淘汰赛制和单循环制的含义会用画图和制表的方法解决有关组合计数问题。 2、通过比赛场次问题的解决, 培养学生的应用意识和解决问题的能力。导学策略启发、引导、讨论、练习教学准备教师活动学生活动一、创设情境,引发探究你知道 200 2年第17 届世界杯足球赛在哪里举行吗?这届比赛共有支球队参加? 引入:比赛场次。二、提出问题,解决问题⒈比赛场次计算: 出示:共 32 支球队参赛,平均分成 8 个小组每个小组有支球队。师: 在同一小组中,每2 支球队之间都要进行一场比赛就叫单循环赛。(资料介绍) C 组:巴西、土耳其、哥斯达黎加、中国问题: ①中国队在小组比赛中,比赛了几场? ②小组赛中巴西队比赛了几场? ③小组赛中,土尔其、哥斯达黎加队比赛了几场? ④小组赛中,每支球队比赛的场数都一样吗? ⑤C 组一共进行了多少场比赛? ⒉小结 C 组共举行了 6 场比赛。用字母表示: ABCD ···· 三、练习应用,找出规律: ⑴8 人下棋每两人下一局,共多少局? ⑵六⑴班 60 人相互握手,共握多少次? ⑶一条线段上共有 6 个点,一共有多少条不同线段? 学生回答。分步出示以上问题,学生逐一思考回答。总结规律: 如果用点表示球队, 用两点之间的连线
六年级数学比赛场次.doc 来自淘豆网m.daumloan.com转载请标明出处.