下载此文档

R-软件中的非参数回归.pdf


文档分类:高等教育 | 页数:约17页 举报非法文档有奖
1/17
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/17 下载此文档
文档列表 文档介绍
Nonparametric Regression in R
An Appendix to An R Companion to Applied Regression, Second Edition
John Fox & Sanford Weisberg
last revision: 13 December 2010
Abstract
In traditional parametric regression models, the functional form of the model is specified
before the model is fit to data, and the object is to estimate the parameters of the model. In
nonparametric regression, in contrast, the object is to estimate the regression function directly
without specifying its form explicitly. In this appendix to Fox and Weisberg (2011), we describe
how to fit several kinds of nonparametric-regression models in R, including scatterplot smoothers,
where there is a single predictor; models for multiple regression; additive regression models; and
generalized nonparametric-regression models that are analogs to generalized linear models.
1 Nonparametric Regression Models
The traditional nonlinear regression model (described in the Appendix on nonlinear regression) fits
the model
y = m(x, ) + "
where  is a vector of parameters to be estimated, and x is a vector of predictors; the errors "
are assumed to be normally and independently distributed with mean 0 and constant variance 2.
The function m(x, ), relating the average value of the response y to the predictors, is specified in
advance, as it is in a linear regression model.
The general nonparametric regression model is written in a similar manner, but the function m
is left unspecified:
y = m(x) + "
= m(x1, x2, . . . , xp) + "

for the p predictors x = (x1, x2, . . . , xp) . Moreover, the object of nonparametric regression is to
estimate the regression function m(x) directly, rather than

R-软件中的非参数回归 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数17
  • 收藏数0 收藏
  • 顶次数0
  • 上传人陈潇睡不醒
  • 文件大小416 KB
  • 时间2021-03-27
最近更新