下载此文档

2013年八年级下数学《分式》知识点复习.doc


文档分类:中学教育 | 页数:约3页 举报非法文档有奖
1/3
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/3 下载此文档
文档列表 文档介绍
松阳中学八年级数学复习
分式知识点  
:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
、无意义的条件:
分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。
:
分式=0的条件是A=0,且B≠0.
(首先求出使分子为0的字母的值,,就是所要求的字母的值。)
:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为(其中A、B、C是整式),
:
和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。求最简公分母时应注意以下几点:
(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;
(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;
(3)如果分母是多项式,一般应先分解因式。
:
和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;
(2)找公因式的方法:
①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;
②当分子、分母都是多项式时,先把多项式因式分解。
:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

用式子表示是:
分式的乘除混合运算统一为乘法运算。
①分式的乘除法混合运算顺序与分数的乘除混合运算相同,即按照从左到右的顺序,有括号先算括号里面的;
②分式的乘除混合运算要注意各分式中分子、分母符号的处理,可先确定积的符号;
③分式的乘除混合运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式。
分式乘方法则:分式乘方要把分子、分母各自乘方。
用式子表示是: (其中n是正整数)
分式的加减法则:
同分母的分式相加减,分母不变,把分子相加减。
用式子表示为:± =
异分母的分式相加减,先通分,转化为同分母分式,然后再加减。
用式子表示为: ± =± =
注意:(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;
(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;
(3)运算时顺序合理、步骤清晰;
(4)运算结果必须化成最简分式

2013年八年级下数学《分式》知识点复习 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数3
  • 收藏数0 收藏
  • 顶次数0
  • 上传人tiros009
  • 文件大小0 KB
  • 时间2014-07-10
最近更新