Last updated on the afternoon of January 3, 2021
高中数学三角函数知识点及试题总结
高考三角函数
:
sin=0
cos=1
tan=0
sin3=
cos3=
tan3=
sin=
cos=
tan=1
sin6=
cos6=
tan6=
sin9=1
cos9=0
tan9无意义
2.角度制与弧度制的互化:
3
6
9
18
27
36
0
弧长公式:扇形面积公式:S=
----是圆心角且为弧度制。r-----是扇形半径
设是一个任意角,它的终边上一点p(x,y),r=
(1)正弦sin=余弦cos=正切tan=
(2)各象限的符号:
—+
+—
-
x
y
++
O
——
+
x
y
O
—+
—+
y
O
sincostan
:
(1)平方关系:sin2+cos2=1。(2)商数关系:=tan
()
:记忆口诀:奇变偶不变,符号看象限。
,,.
,,.
,,.
,,.
口诀:函数名称不变,符号看象限.
,.
,.
口诀:正弦与余弦互换,符号看象限.
7正弦函数、余弦函数和正切函数的图象与性质
倍角公式
sin2=2sin·cos
cos2=cos2-sin2
=2cos2-1
=1-2sin2
两角和与差的三角函数关系
sin()=sin·coscos·sin
cos()=cos·cossin·sin
8、三角函数公式:
降幂公式:升幂公式:
1+cos=cos2
1-cos= sin2
9.正弦定理:
.
余弦定理:
;
;
.
三角形面积定理..
1.直角三角形中各元素间的关系:
如图,在△ABC中,C=90°,AB=c,AC=b,BC=a。
(1)三边之间的关系:a2+b2=c2。(勾股定理)
(2)锐角之间的关系:A+B=90°;
(3)边角之间的关系:(锐角三角函数定义)
sinA=cosB=,cosA=sinB=,tanA=。
2.斜三角形中各元素间的关系:
在△ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。
(1)三角形内角和:A+B+C=π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等
。
(R为外接圆半径)
(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍
a2=b2+c2-2bccosA;b2=c2+a2-2cacosB;c2=a2+b2-2abcosC。
3.三角形的面积公式:
(1)△=aha=bhb=chc(ha、hb、hc分别表示a、b、c上的高);
(2)△=absinC=bcsinA=acsinB;
(3)△===;
(4)△=2R2sinAsinBsinC。(R为外接圆半径)
(5)△=;
(6)△=;;
(7)△=r·s。
4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形
解斜三角形的主要依据是:
设△ABC的三边为a、b、c,对应的三个角为A、B、C。
(1)角与角关系:A+B+C=π;
(2)边与边关系:a+b>c,b+c>a,c+a>b,a-b<c,b-c<a,c-a>b;
(3)边与角关系:
正弦定理(R为外接圆半径);
余弦定理c2=a2+b2-2bccosC,b2=a2+c2-2accosB,a2=b2+c2-2bccosA;
它们的变形形式有:a=2RsinA,,。
5.三角形中的三角变换
三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
(1)角的变换
因为在△ABC中,A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。;
(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。
r为三角形内切圆半径,p为周长之半。
(3)在△ABC中,熟记并会证明:∠A,∠B,∠C成等差数列的充分必要条件是∠B=60°;△ABC是正
高中数学三角函数知识点及试题总结 来自淘豆网m.daumloan.com转载请标明出处.