高中数学第五章-平面向量
考试内容:数学探索©.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移.
数学探索©:数学探索©(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.
数学探索©(2)掌握向量的加法和减法.
数学探索©(3)掌握实数与向量的积,理解两个向量共线的充要条件.
数学探索©(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.
数学探索©(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.
数学探索©(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式.
§05. 平面向量知识要点
(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法 ;字母表示:a;
坐标表示法 a=xi+yj=(x,y).
(3)向量的长度:即向量的大小,记作|a|.
(4)特殊的向量:零向量a=O|a|=O.
单位向量aO为单位向量|aO|=1.
(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)
(6) 相反向量:a=-bb=-aa+b=0
(7)平行向量(共线向量):方向相同或相反的向量,∥.
运算类型
几何方法
坐标方法
运算性质
向量的
加法
向量的
减法
三角形法则
,
数
乘
向
量
,满足:
2.>0时,同向;
<0时,异向;
=0时,.
向
量
的
数
量
积
是一个数
,
.
2.
、公式
(1)平面向量基本定理
e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,
λ2,使a=λ1e1+λ2e2.
(2)两个向量平行的充要条件
a∥ba=λb(b≠0)x1y2-x2y1=O.
(3)两个向量垂直的充要条件
a⊥ba·b=Ox1x2+y1y2=O.
(4)线段的定比分点公式
设点P分有向线段所成的比为λ,即=λ,则
=+ (线段的定比分点的向量公式)
(线段定比分点的坐标公式)
当λ=1时,得中点公式:
=(+)或
(5)平移公式
设点P(x,y)按向量a=(h,k)平移后得到点P′(x′,y′),
则=+a或
曲线y=f(x)按向量a=(h,k)平移后所得的曲线的函数解析式为:
y-k=f(x-h)
(6)正、余弦定理
正弦定理:
余弦定理:a2=b2+c2-2bccosA,
b
向量知识点总结 来自淘豆网m.daumloan.com转载请标明出处.