集合的概念及运算
考纲要求
(1)集合的含义与表示
① 了解集合的含义、元素与集合的属于关系.
② 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
(2)集合间的基本关系
① 理解集合之间包含与相等的含义,能识别给定集合的子集.
② 在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
① 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.
② 理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③ 能使用韦恩(Venn)图表达集合的关系及运算。
考情分析
1。集合部分主要以考查集合的含义、基本关系与基本运算为主,题目简单、易做,大多都是送分题;
2。近几年部分省市也力求创新,创造新情境,尽可能做到灵活多样,甚至进行一些小综合,比如新定义题目,与方程、不等式、函数、数列等内容相联系的题目出现;
,大多都是试卷的第1、2题。
教学过程
基础梳理
1.集合:某些指定的对象集在一起成为集合。
(1)集合中的对象称元素,若a是集合A的元素,记作;若b不是集合A的元素,记作;
(2)集合中的元素必须满足 、 、 。
确定性:设A是一个给定的集合,x是某一个具体对象,则或者是
A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;
互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;
无序性:集合中不同的元素之间没有地位差异,与顺序无关;
(3)表示一个集合可用列举法、描述法或韦恩图法;
列举法:把集合中的元素 出来,写在大括号内;
描述法:把集合中的元素的 描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(4)常用数集及其记法:
非负整数集(或自然数集),记作 ;
正整数集,记作 或 ;
整数集,记作 ;
有理数集,记作 ;
实数集,记作 .
2.集合的包含关系:
(1)集合A的 ,则称A是B的子集,记作AB;
集合相等: ,则称A等于B,记作A=B;若AB且A≠B,则称A是B的真子集,记作A B;
(2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有 子集(其中2n-1个真子集);
3.全集与补集:
(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U;
(2)若S是一个集合,AS,则,= 称S中子集A的补集;
(3)简单性质:1)(A)= ;2)S=,=S。
4.交集与并集:
(1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B
导学案001集合的概念及运算 来自淘豆网m.daumloan.com转载请标明出处.