文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]
排列组合用A还是C的技巧
排列组合用A还是C的技巧.
解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。下面介绍几种常用的解题方法和策略。
一、合理分类与准确分步法(利用计数原理)
解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。
例1 、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( )
A.120种 B.96种 C.78种 D.72种
分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有P(4,4)=24 种排法;2)若甲在第二,三,四位上,则有C(3,1)*C(3,1)*P(3,3)=54 种排法,由分类计数原理,排法共有78 种,选C。
解排列与组合并存的问题时,一般采用先选(组合)后排(排列)的方法解答。
例 2、 4个不同小球放入编号为1,2,3,4的四个盒中,恰有一空盒的方法有多少种
分析: 因恰有一空盒,故必有一盒子放两球。1)选:从四个球中选2个有 C(4,2)种,从4个盒中选3个盒有 C(4,3)种;2)排:把选出的2个球看作一个元素与其余2球共3个元素,对选出的3盒作全排列有P(3,3) 种,故所求放法有C(4,2)*C(4,3)*P(3,3)=144 种。
二、特殊元素与特殊位置优待法
对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
例3、 用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有( )。
A. 24个 B。30个 C。40个 D。60个
[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类:1)0排末尾时,有P(4,2)=12个,2)0不排在末尾时,则有C(2,1)C(3,1)C(3,1)=18 个,由分数计数原理,共有偶数 30个,选B。
例4、 马路上有8只路灯,为节约用电又不影响正常的照明,可把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的灯,那么满足条件的关灯方法共有多少种
分析:表面上看关掉第1只灯的方法有6种,关第二只,第三只时需分类讨论,十分复杂。若从反面入手考虑,每一种关灯的方法对应着一种满足题设条件的亮灯与关灯的排列,于是问题转化为“在5只亮灯的4个空中插入3只暗灯”的问题。故关灯方法种数为C(4,3)=4 。
三、插空法、捆绑法
对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元
排列组合用A还是C的技巧 来自淘豆网m.daumloan.com转载请标明出处.