下载此文档

HDFS的副本存放策略.doc


文档分类:IT计算机 | 页数:约16页 举报非法文档有奖
1/16
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/16 下载此文档
文档列表 文档介绍
HDFS的副本存放策略
HDFS作为Hadoop中的一个分布式文件系统,而且是专门为它的MapReduce设计,所以HDFS除了必须满足自己作为分布式文件系统的高可靠性外,还必须为MapReduce提供高效的读写性能,那么HDFS是如何做到这些的呢?首先,HDFS将每一个文件的数据进行分块存储,同时每一个数据块又保存有多个副本,这些数据块副本分布在不同的机器节点上,这种数据分块存储+副本的策略是HDFS保证可靠性和性能的关键,这是因为:,提高了文件随机读的效率和并发读的效率;;。在这里,副本的存放策略又是HDFS实现高可靠性和搞性能的关键。
HDFS采用一种称为机架感知的策略来改进数据的可靠性、可用性和网络带宽的利用率。通过一个机架感知的过程,NameNode可以确定每一个DataNode所属的机架id(这也是NameNode采用NetworkTopology数据结构来存储数据节点的原因,也是我在前面详细介绍NetworkTopology类的原因)。一个简单但没有优化的策略就是将副本存放在不同的机架上,这样可以防止当整个机架失效时数据的丢失,并且允许读数据的时候充分利用多个机架的带宽。这种策略设置可以将副本均匀分布在集群中,有利于当组件失效的情况下的均匀负载,但是,因为这种策略的一个写操作需要传输到多个机架,这增加了写的代价。
在大多数情况下,副本系数是3,HDFS的存放策略是将一个副本存放在本地机架节点上,一个副本存放在同一个机架的另一个节点上,最后一个副本放在不同机架的节点上。这种策略减少了机架间的数据传输,提高了写操作的效率。机架的错误远远比节点的错误少,所以这种策略不会影响到数据的可靠性和可用性。与此同时,因为数据块只存放在两个不同的机架上,所以此策略减少了读取数据时需要的网络传输总带宽。在这种策略下,副本并不是均匀的分布在不同的机架上:三分之一的副本在一个节点上,三分之二的副本在一个机架上,其它副本均匀分布在剩下的机架中,这种策略在不损害数据可靠性和读取性能的情况下改进了写的性能。下面就来看看HDFS是如何来具体实现这一策略的。
NameNode是通过类来为每一分数据块选择副本的存放位置的,这个ReplicationTargetChooser的一般处理过程如下:
上面的流程图详细的描述了Hadoop-,当然,这当中还有一些细节问题,如:如何选择一个本地数据节点,如何选择一个本地机架数据节点等,所以下面我还将继续展开讨论。
这里所说的本地节点是相对于客户端来说的,也就是说某一个用户正在用一个客户端来向HDFS中写数据,如果该客户端上有数据节点,那么就应该最优先考虑把正在写入的数据的一个副本保存在这个客户端的数据节点上,它即被看做是本地节点,但是如果这个客户端上的数据节点空间不足或者是当前负载过重,则应该从该数据节点所在的机架中选择一个合适的数据节点作为此时这个数据块的本地节点。另外,如果客户端上没有一个数据节点的话,则从整个集群中随机选择一个合适的数据节点作为此时这个数据块的本地节点。那么,如何判定一个数据节点合不合适呢,它是通过isGoodTarget方法来确定的:
[java] view plaincopy/** * 为一个Block的副本选择本地存放位置 */ private DatanodeDescriptor chooseLocalNode(DatanodeDescriptor localMachine, List<Node> excludedNodes, long blocksize, int maxNodesPerRack, List<DatanodeDescriptor> results) throws NotEnoughReplicasException { // if no local machine, randomly choose one node if (localMachine == null) return chooseRandom(, excludedNodes, blocksize, maxNodesPerRack, results); // otherwise try local machine first

HDFS的副本存放策略 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数16
  • 收藏数0 收藏
  • 顶次数0
  • 上传人学习的一点
  • 文件大小43 KB
  • 时间2021-07-25
最近更新