代数式 班级 姓名
学习目标:
1.了解代数式、单项式、单项式的系数和次数、多项式、多项式的次数、整式的概念;
2.用代数式表示简单问题的数量关系,解释一些简单代数式的实际背景或几何意义;
3.通过例子感受“同一代数式可以表示不同的实际意义”,“理解符号所代表的数量关系”.
学习重点:代数式,单项式、单项式的系数和次数,多项式、多项式的次数,整式的概念以及用代数式表示简单问题的数量关系
学习难点:解释一些简单代数式的实际背景或几何意义.
学习过程:
一、课前准备:
小明到超市购买商品,发现部分食品正在打折促销,原价每袋a元的甲食品9折优惠,原价每袋b元的乙食品8折优惠,小明两种食品各买1袋共需几元?
a
【议一议】
1.用字母a表示月历的方框里右上角的数,则其他三个数分别为 .
2.某航空公司规定:乘坐经济舱的旅客每位可免费携带行李20kg,%付行李费.于是,我们知道随着机票价格和携带行李质量的变化,需付的行李费也将发生变化.
(1)从南京出发,携带行李30kg乘飞机分别到达下列城市,应付行李费多少元?
(2)如果机票价格为m元,携带行李30kg,应付行李费多少元?
(3)如果机票价格为m元,携带行李nkg﹙n>20﹚,应付行李费多少元?
3.某农场有亩产a千克的水稻m亩,亩产b千克的水稻n亩,这个农场水稻的平均亩产为______千克.
二、课堂学习:
像a-1、a+6、a+7、(n-20)、以及上节课出现的n-2、、、40-m-n、a+bn-2等式子都是代数式.单独一个数或一个字母也是代数式.
讨论:a+b=b+a、a<b是代数式吗?
小结:代数式中不含“=”、“>”、“<”、“≥”、“≤”、“≠”等符号.
代数式书写注意事项:
1.数与字母相乘,可省略乘号,数字写在字母前面,若数字是带分数的应写成假分数.
2.除法运算通常写成分数的形式.
3.结果是和或差的形式时,应将式子用括号括起来,再写上单位名称.
例1 为提高电能利用效率,供电公司用“峰谷分时电价”引导居民合理安排用电时间.某地每天8:00到21:00为用电高峰段(简称“峰时”),;21:00到次日8:00为用电低谷段(简称“谷时”),.该地某用户上月峰时用电a千瓦时,谷时用电b千瓦时,该用户上月的峰时电费、谷时电费和总电费分别为多少?
小结:、、、2a2、,这样的代数式叫单项式,单独一个数或一个字母也是单项式.
单项式中的数字因数叫做它的系数,单项式中所有字母的指数和叫做它的次数 .
例2 要在长方形和环形地块中铺设草坪,长方形的长、宽分别为a m、b m,环形的外圆、内圆的半径分别为R m、r m,求共需草皮的面积.
小结:几个单项式的和叫做多项式.例如,n-2、+、ab+πR2-πr2等都是多项式.多项式中,每个单项式叫做多项式的一个项,次数最高项的次数,叫做这个多项式的次数.如πR2-πr2是πR2、-πr2两项的和
32代数式 来自淘豆网m.daumloan.com转载请标明出处.