三角函数和解三角形知识点
2、角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角. 第一象限角的集合为
第二象限角的集合为
第三象限角的集合为
第四象限角的集合为
终边在轴上的角的集合为
终边在轴上的角的集合为
终边在坐标轴上的角的集合为
3、与角终边相同的角的集合为
4、长度等于半径长的弧所对的圆心角叫做弧度.
5、半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是.
6、弧度制与角度制的换算公式:,,.
Pv
x
y
A
O
M
T
7、若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,,.
8、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是,则,,.
9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,
第三象限正切为正,第四象限余弦为正.
11、角三角函数的基本关系:;.
12、函数的诱导公式:
,,.
,,.
,,.
,,.
口诀:函数名称不变,符号看象限.
,.,.
口诀:正弦与余弦互换,符号看象限.
13、①的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
②数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数
的图象;再将函数的图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
14、函数的性质:
①振幅:;②周期:;
函数,当时,取得最小值为 ;当时,取得最大值为,则,,.
15、正弦函数、余弦函数和正切函数的图象与性质:
函
数
性
质
图象
定义域
值域
最值
当时,;当
时,.
当时,
;当
时,.
既无最大值也无最小值
周期性
奇偶性
奇函数
偶函数
奇函数
单调性
在
上是增函数;在
上是减函数.
在上是增函数;在
上是减函数.
在
上是增函数.
对称性
对称中心
对称轴
对称中心
对称轴
对称中心
无对称轴
三角恒等变换
24、两角和与差的正弦、余弦和正切公式:
⑴;⑵;
⑶;⑷;
⑸ ⑹
25、二倍角的正弦、余弦和正切公式:
⑴.
⑵
28、合一变形把两个三角函
三角函数和解三角形知识点 来自淘豆网m.daumloan.com转载请标明出处.