: .
二元一次方程计算题含答案
D
(2)
11.解方程组:
(1)
(2)
12.解二元一次方程组:
(1);
(2)
13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.
(1)甲把a看成了什么,乙把b看成了什么?
(2)求出原方程组的正确解.
14.
15.解下列方程组:
(1)
(2).
16.解下列方程组:(1)
(2)
二元一次方程组解法练习题精选(含答案)
参考答案与试题解析
一.解答题(共16小题)
1.求适合的x,y的值.
考点:
解二元一次方程组.809625
分析:
先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.
解答:
解:由题意得:,
由(1)×2得:3x﹣2y=2(3),
由(2)×3得:6x+y=3(4),
(3)×2得:6x﹣4y=4(5),
(5)﹣(4)得:y=﹣,
把y的值代入(3)得:x=,
∴.
点评:
本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.
2.解下列方程组
(1)
(2)
(3)
(4).
考点:
解二元一次方程组.809625
分析:
(1)(2)用代入消元法或加减消元法均可;
(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.
解答:
解:(1)①﹣②得,﹣x=﹣2,
解得x=2,
把x=2代入①得,2+y=1,
解得y=﹣1.
故原方程组的解为.
(2)①×3﹣②×2得,﹣13y=﹣39,
解得,y=3,
把y=3代入①得,2x﹣3×3=﹣5,
解得x=2.
故原方程组的解为.
(3)原方程组可化为,
①+②得,6x=36,
x=6,
①﹣②得,8y=﹣4,
y=﹣.
所以原方程组的解为.
(4)原方程组可化为:,
①×2+②得,x=,
把x=代入②得,3×﹣4y=6,
y=﹣.
所以原方程组的解为.
点评:
利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:
①相同未知数的系数相同或互为相反数时,宜用加减法;
②其中一个未知数的系数为1时,宜用代入法.
3.解方程组:
考点:
解二元一次方程组.809625
专题:
计算题.
分析:
先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.
解答:
解:原方程组可化为,
①×4﹣②×3,得
7x=42,
解得x=6.
把x=6代入①,得y=4.
所以方程组的解为.
点评:
注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.
4.解方程组:
考点:
解二元一次方程组.809625
专题:
计算题.
分析:
把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.
解答:
解:(1)原方程组化为,
①+②得:6x=18,
∴x=3.
代入①得:y=.
所以原方程组的解为.
点评:
要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.
5.解方程组:
考点:
解二元一次方程组.809625
专题:
计算题;换元法.
分析:
本题用加减消元法即可或运用换元法求解.
解答:
解:,
①﹣②,得s+t=4,
①+②,得s﹣t=6,
即,
解得.
所以方程组的解为.
点评:
此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.
6.已知关于x,y的二元一次方程y=kx+b的解有和.
(1)求k,b的值.
(2)当x=2时,y的值.
(3)当x为何值时,y=3?
考点:
解二元一次方程组.809625
专题:
计算题.
分析:
(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.
(2)将(1)中的k、b代入,再把x=2代入化简即可得出y
二元一次方程计算题含答案 来自淘豆网m.daumloan.com转载请标明出处.