下载此文档

函数对称性、周期性全解.doc


文档分类:中学教育 | 页数:约18页 举报非法文档有奖
1/18
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/18 下载此文档
文档列表 文档介绍
函数对称性、周期性全解析
函数的对称性和奇偶性函数 函数对称性、周期性基本知识
同一函数的周期性、对称性问题(即函数自身)
周期性:对于函数,如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,都有都成立,那么就把函数叫做周期函数,不为零的常数T叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
对称性定义(略),请用图形来理解。
对称性:
我们知道:偶函数关于y(即x=0)轴对称,偶函数有关系式
奇函数关于(0,0)对称,奇函数有关系式
上述关系式是否可以进行拓展?答案是肯定的
探讨:(1)函数关于对称
也可以写成 或
简证:设点在上,通过可知,,即点上,而点与点关于x=a对称。得证。
若写成:,函数关于直线 对称
(2)函数关于点对称

简证:设点在上,即,通过可知,,所以,所以点也在上,而点与关于对称。得证。
若写成:,函数关于点 对称
(3)函数关于点对称:假设函数关于对称,即关于任一个值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于对称。但在曲线c(x,y)=0,则有可能会出现关于对称,比如圆它会关于y=0对称。
周期性:
(1)函数满足如下关系系,则
A、 B、
C、或(等式右边加负号亦成立)
D、其他情形
(2)函数满足且,则可推出即可以得到的周期为2(b-a),即可以得到“如果函数在定义域内关于垂直于x轴两条直线对称,则函数一定是周期函数”
(3)如果奇函数满足则可以推出其周期是2T,且可以推出对称轴为,根据可以找出其对称中心为(以上)
如果偶函数满足则亦可以推出周期是2T,且可以推出对称中心为,根据可以推出对称轴为 (以上)
(4)如果奇函数满足(),则函数是以4T为周期的周期性函数。如果偶函数满足(),则函数是以2T为周期的周期性函数。
定理3:若函数在R上满足,且(其中),则函数以为周期.
定理4:若函数在R上满足,且(其中),则函数以为周期.
定理5:若函数在R上满足,且(其中),则函数以为周期.
两个函数的图象对称性
与关于X轴对称。
换种说法:与若满足,即它们关于对称。
与关于Y轴对称。
换种说法:与若满足,即它们关于对称。
与关于直线对称。
换种说法:与若满足,即它们关于对称。
与关于直线对称。
换种说法:与若满足,即它们关于对称。
关于点(a,b)对称。
换种说法:与若满足,即它们关于点(a,b)对称。
与关于直线对称。
函数的轴对称:
定理1:如果函数满足,则函数的图象关于直线对称.
推论1:如果函数满足,则函数的图象关于直线对称.
推论2:如果函数满足,则函数的图象关于直线(y轴),.
函数的点对称:
定理2:如果函数满足,则函数的图象关于点对称.
推论3:如果函数满足,则函数的图象关于点对称.
推论4:如果函数满足,,.
三、试题
1.已知定义为R的函数满足,,且,则的值(A ).
A.恒小于0 B.恒大于0 C.可能为0 D.可正可负.
分析:形似周期函数,但事实上不是,不过我们可以取特殊值代入,,先用代替,使变形为
.,.
,且函数在上单调递增,所以
,又由,
有,
.选A.
当然,如果已经作出大致图象后,用特殊值代人也可猜想出答案为A.
2:在R上定义的函数是偶函数,,则( B )
,在区间上是减函数
,在区间上是减函数
,在区间上是增函数
,在区间上是增函数
分析:

函数对称性、周期性全解 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数18
  • 收藏数0 收藏
  • 顶次数0
  • 上传人yinjiong623147
  • 文件大小1.01 MB
  • 时间2021-08-13