(讯)TalkingData本次推出的《移动游戏运营数据分析指标白皮书》,旨在规范行业数据指标定义。所有数据指标的定义按照国际规范重新梳理,并对传统游戏运营数据分析方法中的常用指标进行调整,使之更适合移动游戏这一新领域。统一的数据分析指标,有助于运营人员理解、分析用户行为,改进产品,制定运营策略,让数据化运营更有效率。
一、用户获取(Acquistion)
日新登用户数(Daily New Users,DNU):每日注册并登录游戏的用户数。
解决问题:
*渠道贡献的新用户份额情况;
*宏观走势,是否需要进行投放;
*是否存在渠道作弊行为。
备注:
*周新登用户数为本周7天日新登用户数累计之和;
*月新登用户数计算同上;
*根据需要,可细分为自然增长用户(非推广期)和推广用户(推广期)。
日一次会话用户数(Daily One Session Users,DOSU):一次会话用户,即新登用户中只有一次会话,且会话时长低于规定阈值。
解决问题:
*推广渠道是否有刷量作弊行为;
*渠道推广质量是否合格;
*用户导入是否存在障碍点,如:网络状况、加载时间等。
备注:
*周一次会话用户数为本周7天日一次会话用户数累计之和;
*月一次会话用户数计算同上;
*游戏引导设计分析点之一;
*DOSU有助于评估新登用户质量,进一步分析则需要定义活跃用户的月一次会话用户数。
用户获取成本(Customer Acquisition Cost,CAC)=推广成本/有效新登用户
解决问题:
*获取有效新登用户的成本是多少;
*如何选择正确的渠道优化投放;
*渠道推广成本是多少。
备注:
*CAC计算要根据渠道来进行细分。
二、用户活跃(Activation)
日活跃用户数(Daily Active Users,DAU):每日登录过游戏的用户数
解决问题:
*游戏的核心用户规模是多少;
*游戏产品周期变化趋势衡量;
*游戏产品老用户流失与活跃情况;
*渠道活跃用户生存周期;
*游戏产品的粘性如何(与MAU结合)。
备注:
DAU对于核心用户规模的衡量需要谨慎对待新登用户和回流用户在DAU中的变化情况,具体需要依据详细的DAU细分才能够了解用户规模和质量。
周活跃用户数(Weekly Active Users,WAU):截止当日,最近一周(含当日的7天)登录过游戏的用户数,一般按照自然周进行计算。
解决问题:
*游戏的周期用户规模是多少;
*游戏产品周期性(每周)变化趋势衡量。
备注:
WAU按照周作为一个周期来分析用户规模,利于在不同活跃用户规模的维度上发现问题和掌握游戏用户规模的波动。
月活跃用户数(Monthly Active Users,MAU):截止当日,最近一个月(含当日的30天)登录过游戏的用户数,一般按照自然月计算。
解决问题:
*游戏的总体用户规模是多少;
*游戏产品用户规模稳定性;
*推广效果评估;
*游戏产品的粘性如何(与DAU结合)。
备注:
*MAU层级的用户规模变化相对较小,能够表现用户规模的稳定性,但某个时期的推广和版本更新对MAU的影响也可能比较明显;
*此外游戏生命周期处于不同时期,MAU的变化和稳定性也是不同的。
日参与次数(Daily Engagement Count,DEC):用户对移动游戏的使用记为一次参与,即日参与次数就是用户每日对游戏的参与总次数。
解决问题:
*衡量用户粘性(日平均参与次数);
*什么渠道,什么用户参与频率较高;
*用户对产品参与频率是什么样的。
备注:
*一般建议30秒内重复开启记录为一次完整使用,不单独计量;
*周参与次数为用户一周对游戏的参与总量;
*月参与次数同上;
*日平均参与次数:该日平均每用户参与游戏次数。
计算公式:日参与次数/日参与用户数;
*通过对不同参与次数的分布分析,可帮助分析版本更新影响,推广渠道刺激。
日均使用时长(Daily Time,DAOT/AT):活跃用户平均每日在线时长。即:日总在线时长/日活跃用户数。一般的精略计算公司:AT=ACU*24/DAU
解决问题:
*用户的游戏参与度如何;
*产品质量把控指标:
*渠道质量如何;
*与单次使用时长结合分析留存和流失问题;
*用户持续游戏能力如何。
备
《移动游戏运营数据分析指标白皮书》摘选 来自淘豆网m.daumloan.com转载请标明出处.