- -.
- - 总结
《必修五 知识点总结》
第一章:解三角形知识要点
一、正弦定理和余弦定理
1、正弦定理:在中,、、分别为角、、的对边,,则有
(为的外接圆的半径)
正弦定理的变形公式:
①,,;
②,,;
③;
2、余弦定理:在中,有,推论:
,推论:
,推论:
3、三角形面积公式:.
二、解三角形
处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解
1、三角形中的边角关系
(1)三角形内角和等于180°;
- -.
- - 总结
(2)三角形中任意两边之和大于第三边,任意两边之差小于第三边;
(3)三角形中大边对大角,小边对小角;
(4)正弦定理中,a=2R·sinA, b=2R·sinB, c=2R·sinC,其中R是△ABC外接圆半径.
(5)在余弦定理中:2bccosA=.
(6)三角形的面积公式有:S=ah, S=absinC=bcsinA=acsinB , S=其中,h是BC边上高,P是半周长.
2、利用正、余弦定理及三角形面积公式等解任意三角形
(1)已知两角及一边,求其它边角,常选用正弦定理.
(2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理.
(3)已知三边,求三个角,常选用余弦定理.
(4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理.
(5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理.
3、利用正、余弦定理判断三角形的形状
常用方法是:①化边为角;②化角为边.
4、三角形中的三角变换
(1)角的变换
因为在△ABC中,A+B+C=π,所以
sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。;
(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。
r为三角形内切圆半径,p为周长之半
三、解三角形的应用
:
- -.
- - 总结
坡面与水平面的锐二面角叫做坡角,坡面的垂直高度和水平宽度的比叫做坡度,用表示,根据定义可知:坡度是坡角的正切,即.
:
如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.
3. 方位角
从指北方向顺时针转到目标方向线的水平角,如B点的方位角为.
注:仰角、俯角、方位角的区别是:三者的参照不同。仰角与俯角是相对于水平线而言的,而方位角是相对于正北方向而言的。
4. 方向角:
相对于某一正方向的水平角.
:
由物体两端射出的两条光线,在眼球内交叉而成的角叫做视角.
- -.
- -
高中数学必修五知识点总结【经典】 来自淘豆网m.daumloan.com转载请标明出处.