下载此文档

二次函数基础知识复习.ppt


文档分类:中学教育 | 页数:约26页 举报非法文档有奖
1/26
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/26 下载此文档
文档列表 文档介绍
二次函数根底知识复习
二次函数定义
1. 整理后自变量的最高次数是2。
2. 二次项的系数a≠0。
3. 二次函数解析式必须是整式。
注意
一般地,形如 的函数,叫做二次函数.
(a,b,c都是常数,且a≠0)
y=ax2+bx+c
以下函数中,哪些是二次函数?是二次函数,说出它的二次项系数、一次项系数和常数项

不是,因为不是整式
1、函数 〔其中a、b、c为常数〕当a、b、c满足什么条件时,
〔1〕它是二次函数;
〔2〕它是一次函数;
〔3〕它是正比例函数;
当 时,是二次函数;
当 时,是一次函数;
当 时,是正比例函数;
考考你
2、函数 ,当m取何值时,
〔1〕它是二次函数?
〔2〕它是反比例函数?
(1)若是二次函数,则 且
∴当 时,是二次函数。
(2)若是反比例函数,则 且
∴当 时,是反比例函数。
二次函数y=ax2+bx+c(a≠0)的图象特点和函数性质1:
(1)函数图像是一条
(2)对称轴是:直线
(3)顶点坐标是:
(4)开口方向:
a>0时,开口 ;
a<0时,开口 .
2a
b
4a
4ac-b2
2a
b
抛物线
x=-
向上
向下
(- , )
〔1〕 a>0时,对称轴左侧,函数值y随x的增大 ;对称轴右侧,函数值y随x的增大 。
a<0时,对称轴左侧,函数值y随x的增大 ;对称轴右侧,函数值y随x的增大 。
〔2〕 a>0时,y最小=
a<0时,y最大=
4a
4ac-b2
4a
4ac-b2
二次函数y=ax2+bx+c(a≠0)图象特点和函数性质2:
而减小
而增大
而增大
而减小
练习
〔1〕求抛物线开口方向,对称轴和顶点M的坐标。
〔2〕设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。
〔3〕x为何值时,y随的增大而减少,x为何值时,y有最大〔小〕值,这个最大〔小〕值是多少?
〔4〕x为何值时,y<0?
x为何值时,y>0?
二次函数
向上,直线 x=-1,M〔-1,-2〕
C(0,- ) A(1,0) B(-3,0)
2
3
x<-1 当x=-1时y有最小值-2
-3<x<1 x<-3或x>1
解析式
使用
范围
一般式
已知任意三个点
顶点式
已知顶点(h,k)及另一点
交点式
已知与x轴的两个交点及另一个点
y=ax2+bx+c
y=a(x-h)2+k
y=a(x-x1)(x-x2)
类型一、求二次函数的解析式
二次函数 y=ax2+bx+c 的图像 如下图 求其解析式。

二次函数基础知识复习 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数26
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1485173816
  • 文件大小1.22 MB
  • 时间2021-09-14