排列组合方法技巧总汇
排列组合方法技巧总汇
排列组合方法技巧总汇
总结排列组合题型
直接法
特殊元素法
例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个
(1)数字1不排在个位和千位
(2)数字1不在个位,数字6不在千位.
分析:(1)个位和千位有5个数字可供选择,其余2位有四个可供选择,由乘法原理:=240
2.特殊位置法
(2)当1在千位时余下三位有=60,1不在千位时,千位有种选法,个位有种,余下的有,共有=192所以总共有192+60=252
间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法=252
例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?
分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数个,其中0在百位的有个,这是不合题意的。故共可组成不同的三位数-=432(个)
插空法 当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?
分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有=100中插入方法。
排列组合方法技巧总汇
排列组合方法技巧总汇
排列组合方法技巧总汇
捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。
4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?
分析:先将男生捆绑在一起看成一个大元素与女生全排列有种排法,而男生之间又有种排法,又乘法原理满足条件的排法有:×=576
练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种()
某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有()(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有其余的就是19所学校选28天进行排列)
阁板法 名额分配或相同物品的分配问题,适宜采阁板用法
例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。
分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有种
练习1.(a+b+c+d)15有多少项?
当项中只有一个字母时,有种(即a。b。c。d而指数只有15故.
当项中有2个字母时,有而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,即
当项中有3个字母时指数15分给3个字母分三组即可
当项种4个字母都在时 四者都相加即可。
练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?(
排列组合方法技巧总汇
排列组合方法技巧总汇
排列组合方法技巧总汇
排列组合方法技巧总汇 来自淘豆网m.daumloan.com转载请标明出处.