编辑版word
页脚下载后可删除,如有侵权请告知删除!
编辑版word
2003年全国硕士研究生入学统一考试数学一试题
一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
(1)
(2) 曲面与平面平行的切平面的方程是.
(3) 设,则= .
(4) 从的基到基的过渡矩阵为 .
(5) 设二维随机变量的概率密度为则
.
(6) 已知一批零件的长度 (单位:cm)服从正态分布,从中随机地抽取16个
零件,得到长度的平均值为40 (),.
(注:标准正态分布函数值
二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.
(1) 设函数在内连续,其导函数的图形如图所示,
则有( )
(A)一个极小值点和两个极大值点.
(B)两个极小值点和一个极大值点.
(C)两个极小值点和两个极大值点.
(D)三个极小值点和一个极大值点.
(2) 设均为非负数列,且,,,则必有( )
(A) 对任意成立. (B) 对任意成立.
(C) 极限不存在. (D) 极限不存在.
编辑版word
页脚下载后可删除,如有侵权请告知删除!
编辑版word
(3) 已知函数在点的某个邻域内连续,且,则( )
(A) 点不是的极值点.
(B) 点是的极大值点.
(C) 点是的极小值点.
(D) 根据所给条件无法判断点是否为的极值点.
(4) 设向量组I:可由向量组II:线性表示,则( )
(A) 当时,向量组II必线性相关. (B) 当时,向量组II必线性相关.
(C) 当时,向量组I必线性相关. (D) 当时,向量组I必线性相关.
(5) 设有齐次线性方程组和, 其中均为矩阵,现有4个命题:
① 若的解均是的解,则秩()秩();
② 若秩()秩(),则的解均是的解;
③ 若与同解,则秩()=秩();
④ 若秩()=秩(), 则与同解.
以上命题中正确的是( )
(A) ① ②. (B) ① ③.
(C) ② ④. (D) ③ ④.
(6) 设随机变量,则( )
(A) . (B) .
(C) . (D) .
三 、(本题满分10分)
过坐标原点作曲线的切线,该切线与曲线及轴围成平面图形.
求的面积;
求绕直线旋转一周所得旋转体的体积.
四 、(本题满分12分)
将函数展开成的幂级数,并求级数的和.
编辑版word
页脚下载后可删除,如有侵权请告知删除!
编辑版word
五 、(本题满分10分)
已知平面区域,为的正向边界. 试证:
(1) ;
(2)
六 、(本题满分10分)
某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为).汽锤第一次击打将桩打进地下. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数. 问
(1) 汽锤击打桩3次后,可将桩打进地下多深?
(2) 若击打次数不限,汽锤至多能将桩打进地下多深?
(注:表示长度单位米.)
七 、(本题满分12分)
设函数)在内具有二阶导数,且是的反函数.
(1) 试将所满足的微分方程变换为满足的微分方程;
(2) 求变换后的微分方程满足初始条件的解.
八 、(本题满分12分)
设函数连续且恒大于零,
,,
其中,
(1) 讨论在区间内的单调性.
(2) 证明当时,
编辑版word
页脚下载后可删除,如有侵权请告知删除!
编辑版word
九 、(本题满分10分)
设矩阵,,,求的特征值与特征向量,其中为的伴随矩阵,为3阶单位矩阵.
十 、(本题满分8分)
已知平面上三条不同直线的方程分别为
,,.
试证: 这三条直线交于一点的充分必要条件为
十一 、(本题满分10分)
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:
(1) 乙箱中次品件数的
考研数一真题及解析 来自淘豆网m.daumloan.com转载请标明出处.