第九章不等式与不等式组
学习目标:
1、了解不等式的概念,能用不等式表示简单的不等关系。
2、知道什么是不等式的解,什么是解不等式,并能判断一个数是否是一个不等式的解。
3、理解不等式的解集,能用数轴正确表示不等式的解集,对于一个较简单的不等式能直接说出它的解集。
4、了解一元一次不等式的概念。
学习重点与难点
重点:不等式的解集的表示.
难点:不等式解集的确定.
学习过程
一、自主学习
学生阅读书本114——115页,完成下列各题。
1、用符号“____”或“____”表示________关系的式子叫做不等式;用“_____”表示不等关系的式子也是不等式。(精品文档请下载)
2、当x=78时,不等式x﹥50成立,那么78就是不等式x﹥50的解。
与方程类似,我们把使不等式______的____________叫做不等式的解。
3、一个含有未知数的不等式的________的解,组成这个不等式的_________。
求不等式的_______的过程叫做解不等式。
二、合作探究(先独立完成,再小组讨论完善答案)
1、对于下列各式中:①3﹥2;②x≠0;③a﹤0;④x+2=5;⑤2x+xy+y;⑥ +1﹥5;⑦a+b﹥(只填序号),(精品文档请下载)
2、下列哪些数值是不等式x+3﹥6的解?那些不是?
-4, -, 0, 1, , 3, , , 8, 12 .
你还能找出这个不等式的其他解吗?这个不等式有多少个解?
3、用不等式表示.
(1)a与5的和是正数; (2)b与15的和小于27;
(3)x的4倍大于或等于8; (4)d与e的和不大于0.
4、你能画出数轴并在数轴上表示出下列不等式的解集吗?
(1)x﹥3 (2)x﹤2 (3)y≥-1
三、自我检测
1、下列数学表达式中,不等式有( )
①-3﹤0;②4x+3y﹥0;③x=3;④x≠2;⑤x+2﹥y+3
(A) 1个. (B)2个. (C)3个. (D)4个.
2、当x=-3时,下列不等式成立的是( )
(A)x-5﹤-8. (B)2x+2﹥0. (C)3+x﹤0. (D)2(1-x)﹥7.
3、用不等式表示:
(1)a的相反数是正数; (2)y的2倍与1的和大于3;
(3)a的一半小于3; (4)d与5的积不小于0;
(5)x的2倍与1的和是非正数.
4、直接写出下列不等式的解集,并把解集在数轴上表示出来:
(1)x+3﹥5; (2)2x﹤8; (3)x-2≥0.(精品文档请下载)
(1)x+2﹥6; (2)2x﹤10; (3)x-2≥.(精品文档请下载)
5、不等式x﹤4的非负整数解的个数有( )
(A)4个. (B)3个. (C)2个. (D)1个.
四、小结与反思:
本节课我学会了: ;(精品文档请下载)
我的困惑是: .(精品文档请下载)
学习目标
1、理解不等式的性质,掌握不等式的解法。
2、渗透数形结合的思想
3.能熟练的应用不等式的基本性质进行不等式的变形。
学习重点与难点
重点:不等式的性质和解法.
难点:不等号方向的确定.
学习过程
自主学习
1、完成书本116的思考。
从以上练习中,你发现了什么规律?
(1)当不等式的两边同时加上或减去同一个数(正数或负数)时,不等号的方向__________。
(2)当不等式的两边同时乘上一个正数时,不等号的方向______________。
而乘同一个负数时,不等号的方向------
不等式与不等式组导学案 来自淘豆网m.daumloan.com转载请标明出处.