“潮起潮落,谁主沉浮?”
《函数的单调性(复习课 第一课时)》
授课教师:陈 凯 阳泉十四中
授课时间:*
*
问题是数学的心脏
引例:写出函数 的单调区间.
解法1:
问题是数学的心脏
引例:写出函数 的单调区间
解法2:
问题是数学的心脏
引例:写出函数 的单调区间
学习交流
1、通过引例的学习,
你认为在把握函数单调性的概念时,
应该着重注意哪些问题?
2、通过引例的学习,
你觉得解决函数单调性的问题主要有哪些方法?
具体如何进行。
如果对于属于定义域 内某个区间上的任意两个自变量 的值,当 时,都有 ( ),那么就说 在这个区间上是增函数(减函数).
一、概念再现
函数的单调区间是定义域的子集,确定函数的单调区间时,应首先确定其定义域.
思维升华
用定义证明函数 在区间 上的单调性的一般步骤:
;
;
.
已知函数 的定义域为 ,在 的某个区间 上,如果 ,那么函数 在区间 上是增函数;如果 ,那么函数 在区间 上是减函数.
二、方法再现
例题分析
巩固训练
设函数 ,则函数 的
单调增区间是 , ; 单
调减区间是 .
在区间 上是减函数.
本节课我们从函数单调性的概念入手,着重学习了:
;
.
课堂小结
函数单调性复习课(第一课时) 来自淘豆网m.daumloan.com转载请标明出处.