: .
第35卷第1期 安 徽 工 程 大 学 学 报 Vol.35.No.1
2020年2月 JournalofAnhuiPolytechnicUniversity Feb.,2020
文章编号:1672G2477(2020)01G0001G11
Truncated MethodsforStochasticEquations:
AReview
1, 2
LIU Wei MAO Xuerong
(1.DepartmentofMathematics,ShanghaiNormalUniversity,Shanghai200234,China;
2.DepartmentofMathematicsandStatistics,UniversityofStrathclyde,Glasgow,G11XH,UK)
Abstract:ThetruncatedEulerGMaruyama(EM)methodwasoriginallyproposedbyMao(2015,J.Comput.
Appl.Math.).Afterthat,plentyofworksemployedtheideatoconstructnumericalapproximationstodifferG
enttypesofstochasticequations.Duetothebloomoftheresearchinthisdirection,wegiveathoroughreview
oftherecentdevelopmentinthispaper,alongwhichwealsopointoutsomepotentialandchallengingresearch.
Keywords:stochasticdifferentequations;superGlinearcoefficients;truncatedmethods;explicitmethods.
ChineseLibraryClassification:O211.6 DocumentIdentification:A
1 Introduction
Inrecentdecades,stochasticdifferentialequations(SDEs)havebeenbroadlyusedtomodeluncerG
tainphenomenaindifferentareas,suchasfinance,biology,chemistry,andphysics[1,12,34G35].
However,theexplicitclosedformofthetruesolutionisrarelyfound.EvenforlinearSDEs,theirexG
plicitexpressionsoftruesolutionsinvolvestochasticintegralsandhencethestatisticalpropertiesofthe
truesolutionsinmostcasescanonlybeseenfromnumericalsimulations.Therefore,numericalmethods
forSDEsbecomeextremelyimportantinapplications.
SincethesolutionstoSDEscanbeunderstoodasstochasticprocesses,theerrorsofnumericalsoluG
tionscouldbeinve
随机方程的截断方法综述 来自淘豆网m.daumloan.com转载请标明出处.