初三数学二次函数教学设计
第 2 页
初三数学二次函数教学设计
【】初三数学二次函数教学设计本文通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
教学目标 知识技能 1. 能列出实际问题中的二次函数关系式;
2. 理解二次函数概念;
3. 能判断所给的函数关系式是否二次函数关系式;
4. 掌握二次函数解析式的几种常见形式.
过程方法 从实际问题中感悟变量间的二次函数关系,、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义.
情感态度 使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。
教学重点 理解二次函数的意义,能列出实际问题中二次函数解析式
教学难点 能列出实际问题中二次函数解析式
教学过程设计
教学程序及教学内容 师生行为 设计意图
一、情境引入
播放实际生活中的有关抛物线的图片,概括性的介绍本章.
二、探究新知
第 3 页
㈠、用函数关系式表示下列问题中变量之间的关系:
,表面积是y,写出y关于x的函数关系式;
?
,计划今后两年增加产量,如果每年都必上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?
㈡观察所列函数关系式,看看有何共同特点?
㈢类比一次函数和反比例函数概念揭示二次函数概念:
一般地,形如 的函数,叫做二次函数。其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项。
实质上,函数的名称都反映了函数表达式与自变量的关系.
三、课堂训练(略)
四、小结归纳:
学生谈本节课收获
五、作业设计
㈠教材16页1、2
第 5 页
㈡补充:
1、①y=-x2②y=2x③y=22+x2-x3④m=3-t-t2是二次函数的是
2、用一根长60cm的铁丝围成一个矩形,矩形面积S(cm2)与它的一边长x(cm)之间的函数关系式是____________.
3、小李存入银行人民币500元,年利率为x%,两年到期,本息和为y元(不含利息税),y与x之间的函数关系是_______,若年利率为6%,两年到期的本利共______元.
4、在△ABC中,C=90,BC=a,AC=b,a+b=16,则RT△ABC的面积S与边长a的关系式是____;当a=8时,S=____;当S=24时,a=________.
5、当k=_____时, 是二次函数.
6、扇形周长为10,半径为x,面积为y,则y与x的函数关系式为_______________.
7、已知s与 成正比例,且t=3时,s=4,则s与t的函数关系式为_______________.
8、下列函数不属于二次函数的是( )
=(x-1)(x+2) = (x+1)2 =2(x+3)2-2x2
最新初三数学二次函数教学设计 来自淘豆网m.daumloan.com转载请标明出处.