电池片生产工艺流程
电池片生产工艺流程
一、制绒
在硅片的表面形成坑凹状表面,减少电池片的反射的太阳光,增加二次反射的面积。一般情况下,用碱处理是为了得到金字塔状绒面;用酸处理是为了得到虫孔状绒面。不管是哪种绒面,
电池片生产工艺流程
电池片生产工艺流程
一、制绒
在硅片的表面形成坑凹状表面,减少电池片的反射的太阳光,增加二次反射的面积。一般情况下,用碱处理是为了得到金字塔状绒面;用酸处理是为了得到虫孔状绒面。不管是哪种绒面,都可以提高硅片的陷光作用。
,硅与单纯的HF、HNO3(硅表面会被钝化,二氧化硅与HNO3不反应)认为是不反应的。但在两种混合酸的体系中,硅则可以与溶液进行持续的反应。
硅的氧化
硝酸/亚硝酸(HNO2)将硅氧化成二氧化硅(主要是亚硝酸将硅氧化)
Si+4HNO3=SiO2+4NO2+2H2O (慢反应)
3Si+4HNO3=3SiO2+4NO+2H2O (慢反应)
二氧化氮、一氧化氮与水反应,生成亚硝酸,亚硝酸很快地将硅氧化成二氧化硅。
2NO2+H2O=HNO2+HNO3 (快反应)
Si+4HNO2=SiO2+4NO+2H2O (快反应)(第一步的主反应)
4HNO3+NO+H2O=6HNO2(快反应)
只要有少量的二氧化氮生成,就会和水反应变成亚硝酸,只要少量的一氧化氮生成,就会和硝酸、水反应很快地生成亚硝酸,亚硝酸会很快的将硅氧化,生成一氧化氮,一氧化氮又与硝酸、水反应,这样一系列化学反应最终的结果是造成硅的表面被快速氧化,硝酸被还原成氮氧化物。
二氧化硅的溶解
SiO2+4HF=SiF4+2H2O(四氟化硅是气体)
SiF4+2HF=H2SiF6
总反应
SiO2+6HF=H2SiF6+2H2O
最终反应掉的硅以氟硅酸的形式进入溶液。
SEVEVSTAR扩散设备。
三、刻蚀去边
由于在扩散过程中,即使采用背靠背的单面扩散方式,硅片的所有表面(包括边缘)都将不可避免地扩散上磷。P-N结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到P-N结的背面而造成短路。此短路通道等效于降低并联电阻。经过刻蚀工序,硅片边缘带有的磷将会被去除干净,避免P-N结短路造成并联电阻降低。
湿法刻蚀原理
大致的腐蚀机制是HNO3氧化生成SiO2,HF再去除SiO2。化学反应方程式如下:
3Si+4HNO3=3SiO2+4NO+2H2O
SiO2+4HF=SiF4+2H2O
SiF4+2HF=H2SiF6
中间部分有碱槽,碱槽的作用是为了抛光未制绒面,使其变得更加光滑;碱槽的主要溶液为KOH;H2SO4溶液的目的是为了使硅片在流水线上漂浮流动起来,不参与反应。
湿法刻蚀现场图
干法刻蚀现场图:
干法刻蚀是用等离子体进行薄膜刻蚀的技术。当气体以等离子体形式存在时,它具备两个特点:一方面等离子体中的这些气体化学活性比常态下时要强很多,根据被刻蚀材料的不同,选择合适的气体,就可以更快地与材料进行反应,实现刻蚀去除的目的;另一方面,还可以利用电场对等离子体进行引导和加速,使其具备一定能量,当其轰击被刻蚀物的表面时,会将被刻蚀物材料的原子击出,从而达到利用物理上的能量转移来实现刻蚀的目的。
四、镀膜
光在硅表面的反射损失率高达35%左右。
一方面,减反射膜提高了对太阳光的利用率,有助于提高光生电流密度,起到提高电流进而提高转换效率的作用。
另一方面,薄膜中的氢对电池的表面钝化降低了发射结的表面复合速率,减小了暗电流,提升了开路电压,从而提高了光电转换效率;在烧穿工艺中的高温瞬时退火断裂了一些Si-H、N-H键,游离出来的H进一步加强了对电池的钝化。
由于太阳电池级硅材料中不可避免的含有大量的杂质和缺陷,导致硅中少子寿命及扩散长度降低从而影响电池的转换效率。
H能钝化硅中缺陷的主要原因是:H能与硅中的缺陷或杂质进行反应,从而将禁带中的能带转入价带或者导带。
在真空、480摄氏度的环境温度下,通过对石墨舟的导电,使硅片的表面镀上一层SixNy。
根据镀膜在硅片上的氮化硅的厚度不同,反映出电池片不同的颜色;注意石墨舟的电机朝向;电池片周边显示的白点为镀膜石墨舟内的勾点。
五、印刷
第一道背面银电极,第二道背面铝背场的印刷和烘干,主要监控印刷后的湿重;第二道
电池片生产工艺流程 来自淘豆网m.daumloan.com转载请标明出处.